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Abstract

Low-energy excitation energies of a magnetic solid with localized spins are probed by magnetic susceptibility, neutron scattering

and Raman scattering measurements, and are analyzed using a spin Hamiltonian with a set of spin exchange parameters. The nature

and values of the spin exchange parameters deduced from this analysis depend on what spin exchange paths one includes in the spin

Hamiltonian. In this article, we review how spin exchange interactions of magnetic solids with localized spins are described on

formal, quantitative and qualitative theoretical levels, investigate antisymmetric and anisotropic interactions for general spin dimers,

and discuss the spin exchange interactions and magnetic structures of various extended magnetic solids on the basis of spin dimer

analysis. Strongly interacting spin exchange paths of a magnetic solid are determined by the overlap between its magnetic orbitals, so

that the strongly interacting spin unit of a magnetic solid does not necessarily have the same geometrical feature as does the

arrangement of its magnetic ions or spin-carrying molecules. Therefore, in interpreting results of magnetic susceptibility, inelastic

neutron scattering or Raman scattering measurements, it is essential to employ a set of spin exchange parameters chosen on the basis

of proper electronic structure considerations. Spin dimer analyses based on extended Hückel tight binding calculations provide a

reliable and expedient means to study the relative strengths of superexchange and super-superexchange spin exchange interactions.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A magnetic solid with localized spins has low-lying
excited states resulting from their weak interactions. The
low-energy excitation energies associated with these
magnetic states are probed by performing magnetic
susceptibility, inelastic neutron scattering or Raman
scattering measurements. In magnetic susceptibility
experiments, which are carried out as a function of
temperature under a probing magnetic field, the low-
energy excitation energies are deduced indirectly by
studying the temperature dependence of the Boltzmann
populations of the low-lying excited states. In ineleastic
neutron scattering and Raman scattering experiments,
the low-energy excitation energies are detected directly
by measuring the energies of the inelastically scattered
onding author. Fax: +1-919-515-7832.

ddress: mike whangbo@ncsu.edu (M.-H. Whangbo).

3/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

/S0022-4596(03)00273-1
neutrons and photons, respectively. Inelastic neutron
scattering measurements are carried out at very low
temperatures (e.g., 10–15K) to avoid complications
resulting from inelastic neutron–phonon interactions. In
Raman scattering experiments, both magnetic and
vibrational excitations occur so that it is necessary to
identify the peaks of magnetic excitations from a
resulting Raman spectrum, for which the magnetic
excitation energies observed from magnetic susceptibil-
ity or inelastic neutron scattering measurements are
invaluable.

To determine the nature and strengths of the
interactions between localized spins in a magnetic solid,
results of magnetic susceptibility, inelastic neutron
scattering and Raman scattering experiments are ana-
lyzed in terms of a Heisenberg spin Hamiltonian Ĥ;
which is written as a sum of bilinear isotropic spin
exchange interactions between adjacent spin sites i

and j; JijŜi � Ŝj; where Ŝi and Ŝj are the spin operators
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at the sites i and j; respectively, and Jij is the spin
exchange parameter. This phenomenological Hamilto-
nian expresses excitation energies of a magnetic solid in
terms of a set of spin exchange parameters Jij : Thus
in analyzing experimental results in terms of Ĥ; the spin
exchange parameters Jij become numerical fitting para-
meters needed to reproduce the experimental results.
The nature and values of these ‘‘experimental’’ Jij

parameters depend on what spin exchange paths one
includes in the spin Hamiltonian, and more than one set
of Jij values can lead to an equally acceptable fitting. It
is essential to examine the electronic structure of a
magnetic solid to obtain a meaningful set of spin
exchange parameters.

Concerning how the signs of spin exchange interac-
tions depend on the electronic structures of the spin
exchange paths, qualitative relationships were first
developed by Goodenough [1], and were extended by
Kanamori [2]. On the basis of electronic structure
considerations, Anderson [3] laid a theoretical founda-
tion for describing bilinear isotropic spin exchange
interactions. Certain physical phenomena of magnetic
solids are not explained in terms of isotropic spin
exchange interactions alone. To explain these phenom-
ena, Moriya [4] introduced antisymmetric and aniso-
tropic interactions between spins. A more general
treatment of isotropic, antisymmetric and anisotropic
interactions was given by Erdös [5]. Some compounds
have negligible antisymmetric and anisotropic interac-
tions but their magnetic properties are not well explained
in terms of bilinear isotropic interactions alone. For such
instances it was found necessary to include biquadratic
interactions between spins [6]. A general description of
biquadratic interactions was given by Griffith [7].

Over the years a number of studies [8–13] have
investigated how isotropic spin exchange interactions
described by Heisenberg Hamiltonians are related to the
electronic structures of magnetic systems. Through these
studies, it became possible to think about spin exchange
interactions in terms of qualitative chemical concepts
such as overlap and orbital interaction [8,9]. They also
made it possible to calculate quantitatively the strengths
of spin exchange interactions using state-of-art electro-
nic structure computations on the basis of either the
configuration interaction (CI) wave function or the
density functional theory (DFT) method [14–23].

In choosing a correct set of spin exchange paths to
analyze experimental data and hence correctly explain-
ing the physical properties of a magnetic solid, it is
sufficient to know the relative strengths of its spin
exchange interactions. In a magnetic solid of transition
metal ions M whose first coordinate spheres are made
up of main group ligand atoms L; spin exchange
interactions between adjacent metal ions may take place
through M2L2M superexchange (SE) paths or
M2L?L2M super-superexchange (SSE) paths. The
relative strengths of SE interactions can be guessed
using Goodenough rules [24] in terms of the
+M2L2M angle, the symmetry properties of the
metal d-orbitals containing unpaired spins, and the
number of unpaired spins at the metal site M: There
have been no such qualitative rules for predicting the
relative magnitudes of SSE interactions. As a result, in
assigning strongly interacting spin exchange paths of a
magnetic solid, SSE interaction paths have often been
neglected, and the assignment has been guided by the
ease and/or the novelty of the eigenvalue problem the
supposed spin lattice generates. Consequently, as
exemplified by the studies of vanadyl pyrophosphate
(VO)2P2O7, the magnetic properties of a magnetic
system can be explained in terms of a spin lattice model
totally irrelevant for the system [25,26]. Therefore, it is
essential to assign spin lattices of magnetic solids with
the help of appropriate electronic structure considera-
tions because a SSE interaction can be stronger than any
SE interaction [26–28]. Our studies [26] on numerous
magnetic solids have shown that one can estimate the
relative strengths of SE and SSE interactions almost
semiquantitatively using spin dimer analyses based on
extended Hückel [29] tight-binding (EHTB) electronic
structure calculations (see Section 6).

As discussed above, theoretical studies of magnetic
solids include three important components, namely,
studies of the eigenvalue structures of spin Hamilto-
nians, quantitative calculations of spin exchange inter-
actions in terms of first-principles electronic structure
computations, and qualitative estimations of the relative
strengths of spin exchange interactions using semi-
empirical electronic structure calculations. In this work
we will review the essential issues concerning these three
aspects of theoretical studies, present results of our
investigation on antisymmetric and anisotropic interac-
tions for general spin dimers, and review the spin
exchange interactions and magnetic structures of var-
ious magnetic solids probed by spin dimer analyses
using EHTB calculations. For early reviews, the readers
are referred to the articles of Ginsberg [30], Griffith [7],
and Hatfield [31] as well as the monographs of White
[32], Bencini and Gatteschi [33], and Kahn [34].

Our work is organized as follows: Section 2 examines
isotropic spin exchange interactions described by
Heisenberg Hamiltonians. In Section 3 we investigate
in some detail antisymmetric and anisotropic interac-
tions for general spin dimers, and briefly discuss
biquadratic interactions. Section 4 probes how spin
exchange parameters are determined quantitatively
using first-principles electronic structure calculations.
The question of how to describe trends in spin exchange
interactions on a qualitative level is probed in Section 5.
In Section 6 we discuss the strengths and weaknesses of
EHTB electronic structure calculations. In Section 7 we
discuss the spin exchange interactions and magnetic
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structures of various extended magnetic solids on the
basis of spin dimer analyses using EHTB calculations.
Finally, we summarize our conclusions in Section 8.
Important results of our investigation on antisymmetric
and anisotropic interactions are summarized in
Appendix A, B, C.
Fig. 1. Two spin states of a spin dimer that has M unpaired spins at

the spin site 1 and N unpaired spins at the spin site 2: (a) the highest-

spin state jHSS and (b) the broken-symmetry state jBSS: Each spin

site has the highest-spin arrangement, and the two spin sites interact

ferromagnetically in jHSS; and antiferromagnetically in jBSS: In the

transition state jTSS shown in (c), each of the 2N magnetic orbitals

(a- and b-spin) of the spin site 2 has half an electron while the M

unpaired electrons of the spin site 1 are accommodated in the a-spin
magnetic orbitals.
2. Spin states and spin Hamiltonians

Spin exchange interactions described by Heisenberg
Hamiltonians are isotropic. Ising Hamiltonians are
obtained from Heisenberg Hamiltonians by neglecting
all spin exchange interactions but those that occur along
one direction (i.e., the z-direction by convention). Thus
spin exchange interactions become highly anisotropic
under Ising Hamiltonians. In calculating isotropic spin
exchange parameters using first-principles electronic
structure calculations (see Section 4), the spin states of
Heisenberg Hamiltonians are employed if the corre-
sponding electronic structures are generated by the
CI wave function method. However, the spin states of
Ising Hamiltonians are employed if highest-spin (HS)
and broken-symmetry (BS) states generated by electro-
nic structure calculations are used for analysis
[10,11,21,23,35]. The latter is the case even when a
magnetic system under consideration exhibits no mag-
netic anisotropy. Thus we will also discuss the spin
states of Ising Hamiltonians for spin dimers and
extended spin lattices.

2.1. Spin dimers

For a spin dimer consisting of M unpaired spins at
spin site 1 and N unpaired spins at the spin site 2, it can
be assumed that MXN (Fig. 1). The number of the
possible spin states is 2M at site 1, and 2N at site 2, so that
the number of the possible spin states for the spin dimer is
2MþN : Our discussion will be limited to the spin exchange
interactions that result when each spin site has the
highest-spin multiplicity. Thus the number of spin states
to consider is reduced to (M þ 1) at site 1 and (N þ 1) at
site 2, so there are ðM þ 1ÞðN þ 1Þ spin states to consider
for the spin dimer. The spin states of a spin dimer can be
described by the Heisenberg Hamiltonian Ĥ ¼ �JŜ1 � Ŝ2;
which can be written in three different forms.

Ĥ ¼ �JðŜ1xŜ2x þ Ŝ1yŜ2y þ Ŝ1zŜ2zÞ; ð2:1aÞ

Ĥ ¼ �1

2
JðŜ2 � Ŝ2

1 � Ŝ2
2Þ; ð2:1bÞ

Ĥ ¼ �J½Ŝ1zŜ2z þ
1

2
ðŜþ

1 Ŝ�
2 þ Ŝ�

1 Ŝþ
2 Þ	; ð2:1cÞ

where Ŝ ¼ Ŝ1 þ Ŝ2; and Ŝþ
m and Ŝ�

m are the ladder
operators, i.e., Ŝþ

m ¼ Ŝmx þ iŜmy and Ŝ�
m ¼ Ŝmx � iŜmy

(m ¼ 1; 2). The Ising Hamiltonian ĤIsing ¼ �JŜ1zŜ2z
results from Eq. (2.1a) by keeping only the interaction
along the z-direction.

2.1.1. Heisenberg Hamiltonian

The spin states of a spin dimer are described by the
spin wave functions S Msj i using the quantum
numbers S and Ms: The allowed values of S for the
spin dimer are Smax; Smax � 1; Smax22;y;Smin þ 1; and
Smin; where Smax ¼ ðM þ NÞ=2 and Smin ¼ ðM � NÞ=2:
For a given S; the allowed values of Ms are
S;S21;S22;y;�S þ 1; and �S: Similarly, the spin
wave functions for each spin site may be written as
jSi MsiS ði ¼ 1; 2Þ: Since each spin site has the
highest-spin configuration, S1 ¼ M=2 and S2 ¼ N=2:
Each wave function jS MsS of the spin dimer can be
expanded as a linear combination of product functions
jS1 Ms1SjS2 Ms2S; namely [23,35],

jS MsS ¼
X
Ms1

X
Ms2

S1 Ms1 S2 Ms2jS Msh i

 S1 Ms1j i S2 Ms2j i; ð2:2aÞ

where Ms1 and Ms2 run over the values satisfying the
condition Ms1 þ Ms2 ¼ Ms; and the Clebsch–Gordon
coefficients S1 Ms1 S2 Ms2jS Msh i are expressed
in terms of the 3� j symbols as [36,37]

S1 Ms1 S2 Ms2jS Msh i

¼ ð�1Þ�S1þS2�Ms
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S þ 1

p S1 S2 S

Ms1 Ms2 �Ms

 !
:

ð2:2bÞ

The expressions of the spin wave functions S Msj i for
M ¼ N ¼ 123 are listed in Table 1, and those for
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Table 1

Spin wave functions jS MsS (S ¼ Smax;Smax � 1;y; 0) of spin dimers for which M ¼ N as a linear combination of the products of the spin

functions of the spin sites 1 and 2
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(c) M ¼ N ¼ 3
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M ¼ N ¼ 4; 5 can be found in Ref. [35]. For various
cases, the HS state depicted in Fig. 1a is given by one
S1 Ms1j i S2 Ms2j i term,

HSj i ¼ 1

2
M;

1

2
M

����
�

1

1

2
N;

1

2
N

����
�

2

: ð2:3Þ

All other spin states S Msj i are expressed as a linear
combination of more than one S1 Ms1j i S2 Ms2j i
term [35].
The spin wave functions are eigenfunctions of the Ŝ2

operator such that Ŝ2 S Msj i ¼ SðS þ 1Þ S Msj i; and
Ŝ2

i Si Msij i ¼ SiðSi þ 1Þ Si Msij i (i ¼ 1; 2). Thus from
Eqs. (2.1a) and (2.2a), we obtain

Ĥ S Msj i ¼ � 1

2
J½SðS þ 1Þ � S1ðS1 þ 1Þ � S2ðS2 þ 1Þ	

 S Msj i � Es Sð Þ S Msj i ð2:4Þ

That is, the spin wave functions S Msj i are
the eigenfunctions of the Heisenberg Hamiltonian.
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Fig. 2. Eigenvalues EðSÞ of the Heisenberg spin Hamiltonian Ĥ ¼ �JŜ1 � Ŝ2 for M ¼ N ¼ 125: In this plot the value of J was assumed to be

negative.
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The eigenvalue EsðSÞ depends only on S; because S1

and S2 are constants (i.e., S1 ¼ 1
2

M and S2 ¼ 1=2 N).
All the EsðSÞ values for the case of M ¼ N ¼ 125
are graphically presented in Fig. 2. For the HS spin
state, S ¼ Smax ¼ 1

2
ðM þ NÞ ¼ S1 þ S2: For the

lowest-spin state, S ¼ Smin ¼ 1
2
ðM � NÞ ¼ S1 � S2:

Therefore the eigenvalues of these states are given
by [35]

EsðSmaxÞ � EsðHSÞ ¼ �1

4
MNJ; ð2:5aÞ

EsðSminÞ ¼
1

4
MNJ þ 1

2
NJ ð2:5bÞ

and the energy separation between adjacent eigenstates
follows the Landé’s interval rule [35,38].

EsðSÞ � EsðS � 1Þ ¼ �1

2
J½SðS þ 1Þ � ðS � 1ÞS	 ¼ �JS:

ð2:5cÞ

Each energy level EsðSÞ consists of 2S þ 1 substates
(i.e., Ms ¼ S;S21;S22;y;�S þ 2;�S þ 1;2S). The
weighted sum of all the eigenvalues is found to be zero
[36], namely,

XðMþNÞ=2

S¼jM�Nj=2
ð2S þ 1Þ

 �1

2
JISðS þ 1Þ � S1ðS1 þ 1Þ � S2ðS2 þ 1Þm

	 

¼ 0:

ð2:6Þ

The energy gap DEs between the ground and the first
excited spin states plays an important role in determin-
ing the J value experimentally, and also in calculating
the J value by first-principles electronic structure
calculations using the CI wave function method. The
ground spin state is the lowest spin state (i.e., Smin) for
an antiferromagnetic system (i.e., Jo0), and the highest
spin state (i.e., Smax) for the ferromagnetic system (i.e.,
J40). Thus from Eqs. (2.4) and (2.5), we obtain [35]

DEs ¼
� 1þ 1

2
ðM � NÞ

� �
J ðfor Jo0Þ;

N þ 1
2
ðM � NÞ

� �
J ðfor J40Þ:

(
ð2:7Þ

When M ¼ N; therefore, the first excitation energy
DEs is �J for an antiferromagnetic system while it is NJ

for a ferromagnetic system.
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2.1.2. Broken symmetry spin states and Heisenberg spin

Hamiltonian

For the spin dimer with M spins at spin site 1 and N

spins at spin site 2, the wave function of its BS spin state
depicted in Fig. 1b is given by [23,35]

BSj i ¼ 1

2
M;

1

2
M

����
�

1

1

2
N;�1

2
N

����
�

2

: ð2:8Þ

To understand how the BS spin state is related to the
Heisenberg Hamiltonian Ĥ ¼ �JŜ1 � Ŝ2; it is necessary
to expand the BS spin state in terms of the eigenstates of
Ĥ: By using the orthonormal property of spin wave
functions, one can derive the following expression from
Eq. (2.2a):

S1 Ms1j i S2 Ms2j i ¼
XS1þS2

S¼jS1�S2j
ð�1Þ�S1þS2�Ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S þ 1

p


S1 S2 S

Ms1 Ms2 �Ms

 !
S Msj i; ð2:9Þ

where Ms ¼ Ms1 þ Ms2: Thus, the wave function of the
BS spin state is expressed as [35]

BSj i ¼
XðMþNÞ=2

S¼jM�Nj=2
CðS;M;NÞ S

1

2
ðM � NÞ

����
�
: ð2:10aÞ

If M ¼ N; this is simplified as

BSj i ¼
XN

S¼0

CðS;N;NÞ S 0j i
XN

S¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S þ 1

p



1

2
N

1

2
N S

1

2
N �1

2
N 0

0
B@

1
CA S 0j i: ð2:10bÞ

The decompositions of the BS spin states in terms of the
eigenstates of the Heisenberg Hamiltonian Ĥ ¼ �JŜ1 �
Ŝ2 are listed in Table 2 for cases of M ¼ N ¼ 125; and
in Table 3 for cases of M4N [35].

In general, the BS spin state is not an eigenstate of Ŝ2:
It was found that the expectation value of Ŝ2 for the BS
Table 2

Coefficients for the expansion of a BS spin state in terms of the eigenstates jS
for the case of M ¼ N

BS state 0 0
�� �

1 0
�� �

N ¼ 1 1

2

1

2

����
�
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2
�1

2

����
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ffiffiffi
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r ffiffiffi
1

2

r
N ¼ 2 1 1

�� �
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r
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2 �2
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2

ffiffiffi
1

5

r ffiffiffi
2

5

r
N ¼ 5 5

2

5

2

����
�

1

5

2
�5

2
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�

2

ffiffiffi
1

6

r ffiffiffiffiffi
5

14

r

spin state is given by [35]

BSh jŜ2 BSj i ¼ 1

4
ðM � NÞ2 þ 1

2
ðM þ NÞ: ð2:11Þ

Thus BSh jŜ2 BSj i ¼ N when M ¼ N: This explains
why in DFT calculations the BS electronic states have
the expectation value /Ŝ2SE1 for M ¼ N ¼ 1; and
/Ŝ2SE2 for M ¼ N ¼ 2 (for a recent review, see
Ref. [22]). The operators Ŝ2 and Ĥ ¼ �JŜ1 � Ŝ2

commute. Thus the BS spin state is not an eigenstate
of Ĥ because it is not an eigenstate of Ŝ2: The
expectation value of Ĥ for the BS spin state is given
by [23,35]

BSh jĤ BSj i � EsðBSÞ ¼ 1

4
MNJ: ð2:12Þ

From Eqs. (2.5a) and (2.12), therefore, the spin ex-
change parameter J is related to the energy difference
between the BS and HS spin states as [23,35]

EsðBSÞ � EsðHSÞ ¼ 1

2
MNJ: ð2:13Þ

For the eigenstates of the spin Hamiltonian Ĥ ¼ �JŜ1 �
Ŝ2; Eq. (2.7) shows that the weighted sum of the
eigenvalues of all ðM þ 1ÞðN þ 1Þ spin states is zero.
An analogous relationship exists for the HS and BS spin
states. Namely, as shown in Eqs. (2.5a) and (2.12), the
energies of the BS and HS states are the same in
magnitude, but opposite in sign so that the sum of their
energies is zero [35].

2.1.3. Broken symmetry spin states and the Ising spin

Hamiltonian

The Heisenberg Hamiltonian Ĥ does not commute
with the Ising Hamiltonian ĤIsing; so the eigenstates
of Ĥ are not necessarily the eigenstates of ĤIsing; and vice
versa. Each spin state S1 Ms1j i S2 Ms2j i is an eigen-
state of ĤIsing with eigenvalue 2Ms1Ms2J; namely [35],

ĤIsing S1 Ms1j i S2 Ms2j i
¼ �Ms1Ms2J S1 Ms1j i S2 Ms2j i: ð2:14Þ
0S (S ¼ Smax;Smax � 1;y; 0) of the spin Hamiltonian Ĥ ¼ �JŜ1 � Ŝ2
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Table 3

Decomposition of a BS spin state in terms of the eigenstates SðM � NÞ=2j i (S ¼ Smax;Smax � 1;y;Smin) of the spin Hamiltonian Ĥ ¼ �JŜ1 � Ŝ2 for

the case of MaN
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Fig. 3. (a) 1D uniform chain with one spin exchange parameter J. (b)

Spin arrangement of j1HSS: (c) Spin arrangement of j1BSS:
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Thus the HS and BS spin states are eigenstates of ĤIsing:
The HS spin state is an eigenstate of both Ĥ and ĤIsing

with the same eigenvalue. The eigenvalue of ĤIsing for
the BS spin state is the same as the expectation value of
Ĥ for the BS spin state [35].

For a given eigenstate S Msj i of the Heisenberg
Hamiltonian Ĥ; the expectation value of the Ising
Hamiltonian, i.e., S Msh jĤIsing S Msj i; is written as

S Msh jĤIsing S Msj i
¼ �

X
Ms1

X
Ms2

S1 Ms1 S2 Ms2jS Msh i2Ms1Ms2J

ð2:15Þ

by combining Eqs. (2.2a) and (2.14). For M ¼ N ¼
122; the /S MsjĤIsingjS MsS value for a certain
eigenstate S Msj i is the same as the energy of the BS
spin state given by Eq. (2.12). However, this is not true
any more for M ¼ NX3: Therefore, the meaning of a
BS spin state cannot be related to an expectation value
S Msh jĤIsing S Msj i; but should be discussed as an
eigenstate of an Ising Hamiltonian [35].

2.2. Extended spin lattices

2.2.1. Ising Hamiltonian and ordered spin states

The Ising Hamiltonian for an extended spin lattice is
written as

ĤIsing ¼ �
X
ioj

JijŜizŜjz: ð2:16Þ
It is relatively straightforward to determine the energies
of various ordered spin states of a magnetic solid in
terms of this Hamiltonian [21]. For example, consider a
one-dimensional (1D) uniform magnetic chain described
by one spin exchange parameter J (Fig. 3a), which has n

spin sites (n-N). For this chain the Ising Hamiltonian
becomes

Ĥ
Ising
1 ¼ �J

Xn�1

i¼1

ŜizŜðiþ1Þz: ð2:17Þ

The HS and BS states shown in Fig. 3a and b are two
ordered spin states of this uniform chain.

1HSj i ¼ mj i1 mj i2 mj i3 mj i4? mj in�1 mj in; ð2:18aÞ

1BSj i ¼ mj i1 kj i2 mj i3 kj i4? mj in�1 kj in: ð2:18bÞ
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Fig. 4. (a) 1D alternating chain with two spin exchange parameters

J1 and J2: (b) Spin arrangement of j2HSS: (c) Spin arrangement

of j2BS1S: (d) Spin arrangement of j2BS2S:
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Then the energies of these states per spin site are
calculated to be

Esð1HSÞ � 1

n
1HSh jĤIsing

1 1HSj i ¼ �1

4
J; ð2:19aÞ

Esð1BSÞ � 1

n
1BSh jĤIsing

1 1BSj i ¼ 1

4
J: ð2:19bÞ

As another example, consider a 1D alternating magnetic
chain described by two spin exchange parameters J1 and
J2 (Fig. 4a), which has n spin sites (n-N). For this 1D
magnetic chain the Ising Hamiltonian is written as

Ĥ
Ising
2 ¼ �

Xn=2
i¼1

ðJ1Ŝð2iÞzŜð2i�1Þz þ J2Ŝð2iÞzŜð2iþ1ÞzÞ: ð2:20Þ

The HS and the BS states shown in Fig. 4b–d are three
ordered spin states of this chain.

2HSj i ¼ mj i1 mj i2 mj i3 mj i4y mj in�1 mj in; ð2:21aÞ

2BS1j i ¼ mj i1 kj i2 mj i3 kj i4y mj in�1 kj in; ð2:21bÞ

2BS2j i ¼ mj i1 kj i2 kj i3 mj i4 mj i5 kj i6y mj in�1 kj in: ð2:21cÞ

Then the energies of these states per spin site are
calculated to be

Esð2HSÞ � 1

n
2HSh jĤIsing

2 2HSj i ¼ �1

8
ðJ1 þ J2Þ; ð2:22aÞ

Esð2BS1Þ �
1

n
2BS1h jĤIsing

2 2BS1j i ¼ 1

8
ðJ1 þ J2Þ; ð2:22bÞ

Esð2BS2Þ �
1

n
2BS2h jĤIsing

2 2BS2j i ¼ 1

8
ðJ1 � J2Þ: ð2:22cÞ

2.2.2. Heisenberg spin Hamiltonian

By analogy with Eq. (2.1c) the Heisenberg spin
Hamiltonian Ĥ for an extended magnetic solid can be
rewritten as

Ĥ ¼ �
X
ioj

Jij Ŝi � Ŝj

¼ �
X
ioj

Jij ½ŜizŜjz þ
1

2
ðŜþ

i Ŝ�
j þ Ŝ�

i Ŝþ
j Þ	: ð2:23Þ

It is a non-trivial task to determine the eigenvalue
spectrum of this Hamiltonian [39,40]. As an example,
consider a magnetic solid that has n spin sites per repeat
unit cell and one unpaired spin per spin site. Then the
eigenstates of this Hamiltonian can be generated as linear
combinations of all possible product spin functions (e.g.,
jmS1jkS2jmS3yjmSn; jmS1jkS2jkS3yjmSn; etc.),
which are obtained by using either the jmS or jkS spin
state at each spin site ið¼ 1; 2;y; nÞ: Then, the number of
basis functions needed to represent a unit cell of n spin
sites is 2n so that the matrix representation of Ĥ using
these basis functions has the dimension 2n  2n: The latter
increases exponentially with increasing n so that the
resulting matrix quickly becomes too large to diagonalize.
Furthermore, the diagonalization can only be carried out
numerically as a function of the ratios of spin exchange
parameters (i.e., the relative strengths of spin exchange
interactions). Therefore, to gain insight into how the
eigenvalue spectrum depends on the spin exchange paths,
it is necessary to repeat calculations for a large number
of different ratios. As a consequence, the eigenvalue
structures of Heisenberg Hamiltonians can be deter-
mined only for simple extended spin lattices.
3. Interactions beyond bilinear isotropic spin exchange

In the present section we discuss antisymmetric (or
asymmetric), anisotropic and biquadratic interactions
between spins and examine how these interactions
modify the eigenvalue structures of Heisenberg Hamil-
tonians. For simplicity, our discussion will be confined
to spin dimers with M ¼ N ¼ 125:

Moriya [4] showed that the most general bilinear
expression of a spin Hamiltonian Ĥ for the exchange
interaction between two spin sites in orbital singlet states
with total spin operators Ŝ1 and Ŝ2 is

Ĥ ¼ �J Ŝ1 � Ŝ2 þ ~DD � ðŜ1  Ŝ2Þ þ Ŝ1 � G � Ŝ2; ð3:1Þ

where the first term describes isotropic interaction
(Ĥiso), the second term the antisymmetric inter-
action (Ĥanti), and the third term the anisotropic
interaction (Ĥaniso).

Ĥiso ¼ �J Ŝ1 � Ŝ2; ð3:2aÞ

Ĥanti ¼ ~DD � ðŜ1  Ŝ2Þ; ð3:2bÞ

Ĥaniso ¼ Ŝ1 � C � Ŝ2: ð3:2cÞ
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This expression was obtained by considering the spin–
orbit interaction as a perturbation and calculating the
second order perturbation energy to terms bilinear in
isotropic spin exchange interaction and spin–orbit
coupling. In cases of orbital singlet ground states, and
spin–orbit coupling small compared with the crystal
field splitting of the orbital states, it has been customary
to estimate the magnitudes of the Di and Gij elements
by [4,30]

DiEðDg=gÞJ; GijEðDg=gÞ2J ð3:3Þ

with Dg ¼ g � 2j j: Dg is the contribution of the orbital
moment to the g factor and is of the order of l=DE;
where l is the spin–orbit coupling constant and DE is
the crystal field splitting. Under the conditions where
Eq. (3.3) is valid, Dg=gE0:1 at most so that the isotropic
term dominates in Eq. (3.1). However, it has been
pointed out [33] that the estimation by Eq. (3.3) can be
completely wrong.

The general expression of a spin Hamiltonian,
Eq. (3.1), is also derived without resorting to perturba-
tion theory. By considering the spin exchange parameter
J and the spin operators Ŝ1 and Ŝ2 as tensors, Erdös [5]
wrote a spin Hamiltonian as

Ĥ ¼
X
m

X
n

JmnŜ1mŜ2n ðm; n ¼ x; y; zÞ6pt

¼ JxxŜ1xŜ2x þ JxyŜ1xŜ2y þ JxzŜ1xŜ2z

þ JyxŜ1yŜ2x þ JyyŜ1yŜ2y þ JyzŜ1yŜ2z

þ JzxŜ1zŜ2x þ JzyŜ1zŜ2y þ JzzŜ1zŜ2z

¼ð Ŝ1x Ŝ1y Ŝ1z Þ
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

0
B@

1
CA

Ŝ2x

Ŝ2y

Ŝ2z

0
BB@

1
CCA

¼ Ŝ1 � J � Ŝ2 ð3:4Þ

and showed that this expression is equivalent to
Eq. (3.1). For example, the Heisenberg Hamiltonian is
written as [5]

Ĥiso ¼ � J Ŝ1 � Ŝ2

¼ 1

3
ðJxx þ Jyy þ JzzÞðŜ1xŜ2x þ Ŝ1yŜ2y þ Ŝ1zŜ2zÞ ð3:5Þ

so that J ¼ �1
3
ðJxx þ Jyy þ JzzÞ: (The sign convention

for J used in the present work is opposite to that
employed in Ref. [5]). The eigenstates S Msj i of this
isotropic Hamiltonian were discussed in some detail in
the previous section.
3.1. Antisymmetric interactions

In terms of the Jmn parameters the antisymmetric
Hamiltonian Ĥanti is expressed as [5]

Ĥanti ¼
1

2
ðJyz � JzyÞðŜ1yŜ2z � Ŝ1zŜ2yÞ

þ 1

2
ðJzx � JxzÞðŜ1zŜ2x � Ŝ1xŜ2zÞ

þ 1

2
ðJxy � JyxÞðŜ1xŜ2y � Ŝ1yŜ2xÞ

¼DxðŜ1yŜ2z � Ŝ1zŜ2yÞ þ DyðŜ1zŜ2x � Ŝ1xŜ2zÞ
þ DzðŜ1xŜ2y � Ŝ1yŜ2xÞ

¼ ðDx Dy Dz Þ

Ŝ1y Ŝ1z

Ŝ2y Ŝ2z

�����
�����

Ŝ1z Ŝ1x

Ŝ2z Ŝ2x

�����
�����

Ŝ1x Ŝ1y

Ŝ2x Ŝ2y

�����
�����

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼D � ðŜ1  Ŝ2Þ; ð3:6Þ

where Dx ¼ 1
2
ðJyz � JzyÞ; Dy ¼ 1

2
ðJzx � JxzÞ and Dz ¼

1
2
ðJxy � JyxÞ: The antisymmetric vector coupling con-
stant D between two spin sites A and B has the following
properties [4,41]:
(a)
 When a center of inversion is located at the
midpoint between A and B; D ¼ 0:
(b)
 When a mirror plane perpendicular to AB bisects
AB; D is parallel to the mirror plane.
(c)
 When there is a mirror plane including A and B; D
is perpendicular to the mirror plane.
(d)
 When a two-fold rotation axis perpendicular to AB

passes through the midpoint of AB; D is perpendi-
cular to the two-fold axis.
(e)
 When there is an n-fold axis (nX2) along AB; D
is parallel to AB:
If a coordinate system is chosen such that the z-axis is
parallel to the vector D; then Dx ¼ Dy ¼ 0: Thus by
using the notation D ¼ Dz ¼ jDj; the Hamiltonian
Ĥanti is simplified as [5]

Ĥanti ¼DzðŜ1xŜ2y � Ŝ1yŜ2xÞ ¼ DzðŜþ
1 Ŝ�

2 � Ŝ�
1 Ŝþ

2 Þ
¼DzðŜ1xŜ2y � Ŝ1yŜ2xÞ: ð3:7Þ

When we consider only isotropic interactions using
the Hamiltonian ĤHDVV ; the spin states S Msj i with
different Ms values are degenerate with energy
�1

2
J½SðS þ 1Þ � S1ðS1 þ 1Þ � S2ðS2 þ 1Þ	 (Section 2.1.1).

This degeneracy is lifted when both isotropic and
antisymmetric interactions are included using the
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Hamiltonian Ĥiso=anti ¼ Ĥiso þ Ĥanti; because spin states
S Msj i with different S values can interact through

Ĥanti: The interaction between eigenstates S Msj i and
S0 Ms0j i is determined by the matrix elements [5] where

Ms1 þ Ms2 ¼ Ms: These matrix elements have the
following properties [5]:
S0 Ms0h jĤanti S Msj i

¼ i

2
D S0 Ms0h jŜþ

1 Ŝ�
2 � Ŝ�

1 Ŝþ
2 S Msj i

¼ i

2
D

XS1

Ms1¼�S1

XS2

Ms2¼�S2

CðS1Ms1;S2Ms2;SMsÞ

 CðS1Ms1 þ 1;S2Ms2 � 1;S0MsÞ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1 þ Ms1 þ 1ÞðS1 � Ms1ÞðS2 � Ms2 þ 1ÞðS2 þ Ms2Þ

p
� CðS1Ms1 � 1;S2Ms2 þ 1;S0MsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1 � Ms1 þ 1ÞðS1 þ Ms1ÞðS2 þ Ms2 þ 1ÞðS2 � Ms2Þ

p i
; ð3:8Þ
(a)
 S Msh jĤanti S Msj i ¼ 0:

(b)
 S0 Ms0h jĤanti S Msj i ¼ 0; when Ms0aMs:

(c)
 S0 Msh jĤanti S Msj i ¼ 0; when S0 � Sj jX3 or

when S0 þ S is even.

(d)
 S0 � Msh jĤanti S � Msj i ¼

ð�1ÞS0þSþ1
S0 Msh jĤanti S Msj i:
All the non-zero matrix elements
S0 Ms0h jĤanti S Msj i for spin dimers with S1 ¼ S2 ¼
1=2; 1; 3=2; 2 and 5/2 (i.e., M ¼ N ¼ 125) are listed in
Appendix A. Using these matrix elements, the eigenva-
lues of Ĥiso=anti can be determined in terms of the ratio
x ¼ jD=Jj: The eigenvalues of Ĥiso=anti have analytical
expressions for S1 ¼ S2 ¼ 1=2 and 1. This is not true for
most cases of S1 ¼ S2 ¼ 3=2; 2 and 5/2. To provide
pseudo-analytical expressions for the latter, we first
determine the eigenvalues of Ĥiso=anti numerically by
diagonalizing its matrix representation as a function
of x and then fit the resulting eigenvalues with
the polynomial function of x2 of the following
type

EðxÞ ¼ Jðc0 þ c1x2 þ c2x4 þ c3x6 þ c4x8Þ ð3:9Þ

for various regions of x (i.e., 0.0–0.5, 0.5–1.0, 1.0–1.5,
and 1.5–2.0). The eigenvalues of Ĥiso=anti that we
obtained for S1 ¼ S2 ¼ 1=2; 1; 3=2; 2 and 5/2 in this
way are summarized in Appendix B, and are plotted as
a function of x ¼ jD=Jj in Fig. 5.

For the sake of simplicity, the quantum numbers S

and Ms were used in Appendix B and Fig. 5 to label
the eigenstates of Ĥiso=anti even when the states S Msj i
are not eigenstates of Ĥiso=anti: For example, for
S1 ¼ S2 ¼ 1=2; the eigenstates 0 0j i and 1 0j i of
Ĥiso interact through Ĥanti so that the eigenstates
of Ĥiso=anti become linear combinations of 0 0j i and
1 0j i: If x51; the mixing between 0 0j i and 1 0j i
is weak so that one eigensate of Ĥiso=anti is represented
largely by 0 0j i; and the other eigenstate largely
by 1 0j i: Consequently, the use of the notation
EðS MsÞ for an eigenstate of Ĥiso=anti indicates
that the spin state S Msj i is its major com-
ponent when x51; if it interacts with other S0 Msj i
states.
3.2. Anisotropic interactions

There are two ways of discussing anisotropic interac-
tions between spins. As shown by Erdös [5], one may
derive an explicit form of a Hamiltonian designed to
describe anisotropic interactions starting from the
general expression of the spin Hamiltonian Ĥ ¼ Ŝ1 � J �
Ŝ2 given in Eq. (3.4). This formal approach does not
provide insight into how magnetic isotropy comes
about. Alternatively, one may first determine the ground
orbital state of a magnetic ion under the effect of the
crystal field and spin–orbit coupling and then examine
the spin exchange interactions between adjacent ions on
the basis of their ground orbital states. Ultimately, the
two approaches lead to an identical form of a
Hamiltonian needed to discuss anisotropic interactions.
Nevertheless, the second approach is more informative
because anisotropic properties of a magnetic solid at low
temperatures are primarily determined by the ground
orbital states of its magnetic ions.

3.2.1. Intersite interactions

In terms of the Jmn parameters the anisotropic
Hamiltonian Ĥaniso is written as [5]

Ĥaniso ¼ðJxx þ JÞŜ1xŜ2x þ
1

2
ðJxy þ JyxÞŜ1xŜ2y

þ 1

2
ðJxz þ JzxÞŜ1xŜ2z þ

1

2
ðJxy þ JyxÞŜ1yŜ2x

þ ðJyy þ JÞŜ1yŜ2y þ
1

2
ðJyz þ JzyÞŜ1zŜ2y

þ 1

2
ðJxz þ JzxÞŜ1zŜ2x þ

1

2
ðJyz þ JzyÞŜ1zŜ2y

þ ðJzz þ JÞŜ1zŜ2z;
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ð Ŝ1x Ŝ1y Ŝ1z Þ



ðJxx þ JÞ 1

2
ðJxy þ JyxÞ

1

2
ðJxz þ JzxÞ

1

2
ðJxy þ JyxÞ ðJyy þ JÞ 1

2
ðJyz þ JzyÞ

1

2
ðJxz þ JzxÞ

1

2
ðJyz þ JzyÞ ðJzz þ JÞ

0
BBBBBB@

1
CCCCCCA


Ŝ2x

Ŝ2y

Ŝ2z

0
BB@

1
CCA ¼ Ŝ1 � C � Ŝ2; ð3:10Þ

where C is the symmetric anisotropic tensor coupling
constant. Under crystal symmetries in which the matrix
elements Gxy ¼ Gyz ¼ Gzx ¼ 0; this Hamiltonian is
simplified as [5]

Ĥaniso ¼ðJxx þ JÞŜ1xŜ2x þ ðJyy þ JÞŜ1yŜ2y

þ ðJzz þ JÞŜ1zŜ2z: ð3:11aÞ

After some algebra the above equation is modified as

Ĥaniso ¼ 1

4
ðJxx � JyyÞðŜþ

1 Ŝþ
2 þ Ŝ�

1 Ŝ�
2 Þ

þ ðJzz þ JÞ½Ŝ1zŜ2z �
1

4
ðŜþ

1 Ŝ�
2 þ Ŝ�

1 Ŝþ
2 Þ	:

ð3:11bÞ

This expression corresponds to Eq. (8.4) of Ref. [5]
(this latter equation has a typo, i.e., the term ‘‘Jzz’’
should be replaced with ‘‘(Jzz2J)’’ under the sign
convention of J employed in Ref. [5]. This equation
has been used without correction [30,32]).

The eigenstates S Msj i of Ĥiso can interact via Ĥaniso:
Non-zero matrix elements S0 Msh jĤaniso S Msj i
are [5]

S0 Msh jĤaniso S Msj i

¼ ðJzz þ JÞ
XS1

Ms1¼�S1

XS2

Ms2¼�S2

CðS1Ms1;S2Ms2;SMsÞ

 Ms1Ms2CðS1Ms1;S2Ms2;S0MsÞ½

� 1

4
CðS1Ms1 þ 1;S2Ms2 � 1;S0MsÞ


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1 þ Ms1ÞðS1 � Ms1ÞðS2 þ Ms2ÞðS2 � Ms2 þ 1Þ

p

� 1

4
C S1Ms1 � 1;S2Ms2 þ 1;S0Msð Þ


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1 þ Ms1ÞðS1 � Ms1 þ 1ÞðS2 þ Ms2 þ 1ÞðS2 � Ms2Þ

p i
ð3:12aÞ
and

S0 Ms72h jĤaniso S Msj i ¼ 1

4
ðJxx � JyyÞ


XS1

Ms1¼�S1

XS2

Ms2¼�S2

CðS1Ms1;S2Ms2;SMsÞ

 CðS1Ms171;S2Ms271;S0Ms72Þ


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS17Ms1 þ 1ÞðS18Ms1ÞðS7Ms2 þ 1ÞðS28Ms2Þ

p
;

ð3:12bÞ
where Ms1 þ Ms2 ¼ Ms: Thus, for S1 ¼ S2 ¼ 1=2; for
example, the eigenvalues of the Hamiltonian Ĥiso=aniso þ
Ĥiso þ Ĥaniso are given by

Eð0 0Þ ¼ 3

4
J;

Eð1 0Þ ¼ �3

4
J � 1

2
Jzz;

Eð1 1Þ ¼ 1

4
Jzz þ

1

4
þ ðJxx � JyyÞ;

Eð1 � 1Þ ¼ 1

4
Jzz �

1

4
ðJxx � JyyÞ: ð3:13Þ

It is clear from Eq. (3.11a) that the anisotropic term
Ĥaniso vanishes when Jxx ¼ Jyy ¼ Jzz ¼ �J: Under this
condition, Eð0 0Þ ¼ 3

4
J; and Eð1 0Þ ¼ Eð1 1Þ ¼

Eð1 � 1Þ ¼ �1
4

J; as expected.
To examine the effect of anisotropic interactions in

more detail for spin dimers with S1 ¼ S2 ¼ 1=225=2; it
is convenient to simplify the expression of Ĥiso=aniso

further. From Eqs. (3.5) and (3.11b), Ĥiso=aniso is
rewritten as

Ĥiso=aniso ¼ JxxŜ1xŜ2x þ JyyŜ1yŜ2y þ JzzŜ1zŜ2z: ð3:14aÞ
Under the condition that Jxx ¼ Jyy; this equation
becomes

Ĥiso=aniso ¼ �J½aŜ1zŜ2z þ bðŜ1xŜ2x þ Ŝ1yŜ2yÞ	; ð3:14bÞ

¼ �J½aŜ1zŜ2z þ
1

2
bðŜþ

1 Ŝ�
2 þ Ŝ�

1 Ŝþ
2 Þ	 ð3:14cÞ

with aJ ¼ �Jzz and bJ ¼ �Jxx ¼ �Jyy: Then the
coefficients a and b account for various cases of
anisotropic exchange interactions. For example, an
Ising Hamiltonian results when a ¼ 1 and b ¼ 0; an
XY Hamiltonian when a ¼ 0 and b ¼ 1; and a Heisen-
berg Hamiltonian when a ¼ 1 and b ¼ 1: On the basis
of Eq. (3.14c) we evaluate the matrix elements
/S0 MsjĤiso=anisojS MsS as a function of a and b:
The non-zero matrix elements for the cases S1 ¼ S2 ¼
1=2; 1, 3/2, 2 and 5/2 are summarized in Appendix C,
and the associated eigenvalues of Ĥiso=aniso in Appendix
D. Fig. 6 shows how the eigenvalues of the isotropic
Hamiltonian (a ¼ b ¼ 1) vary as the strength of
anisotropic interactions is gradually increased towards
the Ising Hamiltonian (a ¼ 1-0), and toward the XY

Hamiltonian (b ¼ 1-0).
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Fig. 5. Eigenvalues of the Hamiltonian Ĥiso=anti for a spin dimer with M ¼ N ¼ 125 as a function of x ¼ jD=Jj: In this plot the value of J was

assumed to be positive.
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It is of interest to rewrite Eq. (3.14b) as

Ĥiso=aniso ¼ �JaŜ1 � Ŝ2 þ Jða� bÞðŜ1xŜ2x þ Ŝ1yŜ2yÞ:
ð3:14dÞ

The ratio ða2bÞ=a plays an important role in describing
magnetic systems that exhibit strong magnetic aniso-
tropy. This will be discussed further in Section 3.2.3.
3.2.2. Single ion anisotropy

The Hamiltonian describing a single ion can be
divided into three components, i.e., Ĥfree-ion; Ĥcf and
Ĥso: The Ĥfree-ion term represents the Hamiltonian of a
free ion, Ĥcf the crystal field, and Ĥso ¼ lL̂ � Ŝ the spin–
orbit coupling (here L̂ represents the orbital angular
momentum operator). Suppose that the eigenstates of
Ĥ1 ¼ Ĥfree-ion þ Ĥcf were determined, and jnS and jmS
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Fig. 6. Eigenvalues of the Hamiltonian Ĥiso=aniso for a spin dimer with

M ¼ N ¼ 125 as a function of the coefficients a and b that convert the

Heisenberg Hamiltonian (a ¼ 1; b ¼ 1) into the Ising Hamiltonian

(a ¼ 1; b ¼ 0) and the XY Hamiltonian (a ¼ 0; b ¼ 1). In this plot the

value of J was assumed to be positive.
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are the ground and excited states of Ĥ1 with the
eigenvalues En and Em; respectively. By considering
how the spin–orbit coupling affects these states, the
Hamiltonian describing the anisotropy of a single
magnetic ion is given by

Ŝ � K � Ŝ

¼ ð Ŝx Ŝy Ŝz Þ
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

0
B@

1
CA

Ŝx

Ŝy

Ŝz

0
BB@

1
CCA; ð3:15Þ

where K is a symmetric and traceless tensor (i.e., Lmn ¼
Lnm; and

P
m Lmm ¼ 0), and the Lmn elements (m; n ¼

x; y; z) are [33, Chapter 2].

Lmn ¼ l2
X
man

nh jL̂m mj i mh jL̂n nj i
En � Em

: ð3:16Þ

If all the off-diagonal elements Lmn (man) are neglected,
Ŝ � K � Ŝ becomes

Ŝ � K � ŜELxxŜ2
x þ LyyŜ2

y þ LzzŜ2
z : ð3:17aÞ

This equation is rewritten as

Ŝ � K � Ŝ ¼ 3

2
Lzz

	 

Ŝ2

z �
1

3
Ŝ2

	 


þ 1

2
ðLxx � LyyÞðŜ2

x � Ŝ2
yÞ ð3:17bÞ

which is derived from Eqs. (3.11b) after replacing the
Jmm þ J term with Lmm (m ¼ x; y; z) under the constraint
that the two spin sites are identical. The Hamiltonian
Ŝ � K � Ŝ describes the anisotropic interaction of a single
magnetic ion. Since the Ŝ

2
term describes isotropic

interactions, it may be omitted from Eq. (3.17b). Then,
Ŝ � K � Ŝ is simplified as

Ŝ � K � ŜC
3

2
LzzŜ2

z þ
1

2
ðLxx � LyyÞðŜ2

x � Ŝ2
yÞ

¼D0Ŝ2
z þ E0ðŜ2

x � Ŝ2
yÞ; ð3:17cÞ

where D0 ¼ 3
2
Lzz; and E 0 ¼ 1

2
ðLxx � LyyÞ: The Hamilto-

nian Ŝ � K � Ŝ is used to describe single-ion anisotropy
and zero-field splitting [35, Sections 2.5 and 3.1]. This
Hamiltonian acts on pure spin states of a single ion (i.e.,

the spin parts of the eigenstates of Ĥ1 ¼ Ĥfree-ion þ Ĥcf )
and accounts for the effect of spin–orbit coupling in
terms of the parameters D0 and E0:

3.2.3. Pseudo-spin approach to magnetic anisotropy

In understanding the phenomenon of strong aniso-
tropy in magnetic solids at low temperatures, it is critical
to know first the ground orbital state of each magnetic
ion under the influence of the crystal field and spin–orbit
coupling and then consider how adjacent ions interact in
terms of their ground orbital states [42–44]. In this
section we briefly discuss the pseudo-orbital pseudo-spin
approach introduced by Lines [42] to explain the strong
magnetic anisotropy of CoCl2.

The building blocks of CoCl2 are layers of composi-
tion CoCl2 that are made up of edge-sharing CoCl6
octahedra [45]. Each Co2+ ion, located at the center of a
weakly distorted CoCl6 octahedron, is in the high-spin
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state. Thus the local d-block electronic structure of each
Co2+ ion is described by the electron configuration
ðt2gÞ5ðegÞ2 with three unpaired spins. The weak distor-
tion of each CoCl6 octahedron is trigonal in symmetry,
namely, it is slightly flattened along the three-fold
rotational axis that is perpendicular to the CoCl2 layer
[45]. To a first approximation, therefore, each Co2+ ion
of CoCl2 is in a cubic crystal field due to its octahedral
coordination [33, Chapter 2, 42]. The weak distortion
of each CoCl6 octahedron adds a weak trigonal crystal
field to each Co2+ ion [42]. The interactions between
adjacent Co2+ ions leading to the magnetic anisotropy
of CoCl2 at low temperatures are primarily determined
by the ground orbital state of each Co2+ ion. Therefore,
it is essential to identify the nature of this ground state.

The ground orbital state of a free Co2+ (d7) ion is 4F

(i.e., L ¼ 3; S ¼ 3
2
). In a cubic crystal field this state is

split into 4A2;
4T2 and 4T1 states. Of the three states, the

ground orbital state is 4T1; which is described by [46]

f0 ¼
2

3
j3 0S� 1

3

ffiffiffi
5

2

r
ðj3 3S� j3 3SÞ;

fþ1 ¼
ffiffiffi
5

6

r
j3 2Sþ

ffiffiffi
1

6

r
j3 � 1S;

f�1 ¼
ffiffiffi
5

6

r
j3 � 2S�

ffiffiffi
1

6

r
j3 1S; ð3:18Þ

where the orbital momentum states jL mLS refer to
those of a free ion. In terms of the momentum operator
L̂z of a free ion, it can be easily shown [42] that

f1h jL̂z f1j i ¼ �3

2
; f�1h jL̂z f�1j i ¼ 3

2
;

f0h jL̂z f0j i ¼ 0: ð3:19Þ

In addition, all the matrix elements of L̂ between the
three states f0; fþ1 and f�1 are exactly the same as
those of �3

2
L̂ between the corresponding P (i.e.,

L ¼ 1;mL ¼ 1; 0;�1) states of a free ion. Therefore, as
far as the orbital triplet state 4T1 is concerned, the
orbital momentum of a Co2+ ion in a cubic crystal field
can be discussed using the pseudo-orbital operator �3

2
L̂

with the effective orbital states jL0 mL0S; where L0 ¼ 1
and mL0 ¼ 1; 0, �1 as if the Co2+ ion is a free ion
[42,43]. Then, the orbital/spin states of 4T1 can be
represented by jL0 mL0SjS mSS: Here S ¼ 3=2 so
that mS ¼ 3=2; 1/2, �1/2, �3/2. Because the L0 and S

values are fixed, the notations jL0 mL0SjS mSS can
be simplified as jmL0 mSS [42]. Consequently, the
ground orbital triplet state 4T1 of a Co2+ ion in a cubic
field is described by 12 jmL0 mSS functions (mL0 ¼ 1; 0,
�1; mS ¼ 3=2; 1/2, �1/2, �3/2).

As mentioned above, each Co2+ ion of CoCl2 is under
a weak trigonal crystal field due to the slight trigonal
distortion of each CoCl6 octahedron. This distortion
and the spin–orbit coupling will split the 12 jmL0 mSS
states of each Co2+ ion. To find the ground state of
these split levels, we first note that in a trigonal crystal
field the orbital triplet is split into an orbital doublet and
an orbital singlet with energy separation d: This is
described by the operator Ĥcf defined by [42]

Ĥcf ¼ �d L̂2
z �

2

3

	 

ð3:20Þ

which places the states j1 mSS and j � 1 mSS at

�1
3
d; and the state j0 mSS at 2

3
d: In describing the

spin–orbit interaction of a Co2+ ion in a trigonal

distortion in terms of Ĥso; the pure orbital momentum

operator L̂ is replaced with the pseudo-orbital operator

�3
2

kL̂; where the constant k (slightly smaller than unity)

[43,47] is included to reflect the fact that a Co2+ ion of
CoCl2 in bonding interaction with the surrounding Cl�

ions has a smaller angular momentum (in magnitude)
than does a free Co2+ ion. The latter observation comes
about because the 3d orbitals of a Co2+ ion in the
magnetic orbitals of CoCl2 have a weight smaller than
unity. Thus the Hamiltonian Ĥso is modified as

Ĥso ¼ �3

2
klL̂ � Ŝ: ð3:21Þ

Then, the combined Hamiltonian Ĥ0 ¼ Ĥcf þ Ĥso can be
employed to find how the 12 jmL0 mSS states of 4T1

are split by the trigonal distortion and the spin–orbit
interaction [42].

Ĥ0 ¼ � d L̂2
z �

2

3

	 

� 3

2
klL̂ � Ŝ

¼ � d L̂2
z �

2

3

	 

� 3

2
kl L̂zŜz þ

1

2
ðL̂þŜ� þ L̂�ŜþÞ

� �
:

ð3:22Þ
The matrix elements of Ĥ0 for jmL0 mSS are found to
be the same as those for j � mL0 � mSS; that is, the 12
jmL0 mSS states are split into six spin doublets (i.e., six
Kramers’ doublets) [42]. Furthermore, calculations of
the eigenvalues of Ĥ0 as a function of the d=kl ratio
reveal that the ground Kramers’ doublet state is
described by the two functions [42]

cþ ¼ c1 �1
3

2

����
�
þ c2 0

1

2

����
�
þ c3 1 � 1

2

����
�
;

c� ¼ c1 1 � 3

2

����
�
þ c2 0 � 1

2

����
�
þ c3 �1

1

2

����
�
; ð3:23Þ

where the coefficients c1; c2 and c3 are determined by the
d=ðklÞ value applicable to CoCl2.

Since the ground orbital state of each Co2+ ion in
CoCl2 has been identified, we are in a position to
describe the magnetic anisotropy of CoCl2. First, it is
necessary to examine how adjacent Co2+ ions interact in
terms of their ground Kramers’ doublet states [42]. For
this purpose, Lines determined the matrix elements of
the spin operators Ŝx; Ŝy and Ŝz using cþ and c� as
basis functions, i.e., /ijŜmj jS; where i; j ¼ cþ;c� and
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m ¼ x; y; z: By use of the relationships Ŝx ¼ ðŜþ þ Ŝ�Þ=2
and Ŝy ¼ ðŜþ þ Ŝ�Þ=2i; it is straightforward to find the
following matrix representations of Ŝx; Ŝy and Ŝz [42].

Sx ¼
0 q

q 0

 !
; Sy ¼

0 �iq

iq 0

 !
; Sz ¼

p 0

0 p

 !
;

ð3:24aÞ

where the constants q and p are given by

p ¼ 3

2
c21 þ

1

2
c22 �

1

2
c23; q ¼ c22 þ

ffiffiffi
3

p
c1c3: ð3:24bÞ

At this point it is recalled that in terms of the spin states
j1
2
S and j � 1

2
S of a single electron as basis functions, the

spin-half operators ŝx; ŝy and ŝz have the matrix
representations given below.

sx ¼ 1

2

0 1

1 0

 !
; sy ¼ 1

2

0 �i

i 0

 !
; sz ¼

1

2

1 0

0 1

 !
:

ð3:25Þ

Therefore, the true spin of the ground Kramers’ doublet
state can be formally replaced by the pseudo-spin
defined below

Ŝx ¼ 2qŝx; Ŝy ¼ 2qŝy; Ŝz ¼ 2pŝz: ð3:26Þ

This relationship allows one to describe the anisotropic
spin exchange interaction between nearest neighbor
Co2+ ions of CoCl2 formally by using the Heisenberg
Hamiltonian Ĥ ¼ �JŜ1 � Ŝ2: If the operators Ŝ1 and Ŝ2

are replaced with the pseudo-spin operators, one obtains
the effective spin Hamiltonian

Ĥ ¼ �J½ð2pÞ2ŝ1zŝ2z þ ð2qÞ2ðŝ1xŝ2x þ ŝ1yŝ2yÞ	: ð3:27aÞ

This expression is rewritten as

Ĥ ¼ �J 00ðŝ1 � ŝ2Þ þ D00ðŝ1xŝ2x þ ŝ1yŝ2yÞ ð3:27bÞ

with J 00 ¼ ð2qÞ2J and D00 ¼ ½ð2qÞ2 � ð2pÞ2	J: The D00=J 00

ratio can be deduced experimentally using magnetic
susceptibility data, and provides a measure of the extent
of the anisotropy in the spin exchange interaction. Note
that Eq. (3.27b) is formally equivalent to Eq. (3.14d)
with the relationship D00=J 00 ¼ ða� bÞ=a:

It is important to observe that the Heisenberg
Hamiltonian Ĥ ¼ �J Ŝ1 � Ŝ2 describes isotropic spin
exchange interactions when the spin operators Ŝ1 and Ŝ2

refer to pure spin operators. However, this Hamiltonian
can be employed to describe anisotropic interactions if
Ŝ1 and Ŝ2 are replaced with the pseudo-spin operators,
because the effect of spin–orbit coupling and crystal
field has already been included in the pseudo-spin
operators at each spin site. The pseudo-spin approach
is convenient because the anisotropy of a magnetic
system at low temperatures depends primarily on the
ground orbital state of each magnetic ion, and because
the ground orbital state can be easily identified by
analyzing how the crystal field and spin–orbit coupling
split the ground orbital state of a free magnetic ion.

3.3. Biquadratic spin exchange

As for the isotropic spin exchange, we note that the
scalar product operator Ŝ1 � Ŝ2 is not the only possible
one that commutes with the Ŝ2 operator. In particular,
the operator ĤLQ given as the sum of the bilinear and
biquadratic exchange interactions,

ĤLQ ¼ �JŜ1 � Ŝ2 � jðŜ1 � Ŝ2Þ2 ð3:27Þ

also has this property. For a certain magnetic system in
which both antisymmetric and anisotropic interactions
are negligible, the temperature variation of the magnetic
susceptibility is not well described by the Heisenberg
Hamiltonian, which predicts that the energy interval
between successive spin states is identical (i.e., �JS). In
this case it has been found that the operator ĤLQ

provides an accurate description of the magnetic
susceptibility [31]. The eigenstates S Msj i of ĤHDVV

are still eigenstates of ĤLQ with the eigenvalues

EðSÞ ¼ � 1

2
J½SðS þ 1Þ � S1ðS1 þ 1Þ � S2ðS2 þ 1Þ	

� 1

4
j½SðS þ 1Þ � S1ðS1 þ 1Þ � S2ðS2 þ 1Þ	2

ð3:28aÞ

so that the energy interval between successive states is
given by

EðSÞ � EðS � 1Þ ¼ �JS � jS½S2 � S1ðS1 þ 1Þ � S2ðS2 þ 1Þ	
ð3:28bÞ

By using Racah’s irreducible tensor method, Griffith has
shown a general approach to calculate the energy levels
from Hamiltonian Ĥ12 ¼

P
kX1 jkðŜ1 � Ŝ2Þk for a spin

dimer and a spin trimer [31].
4. Quantitative calculations of isotropic spin exchange

interactions

Isotropic spin exchange parameters of an extended
magnetic solid can be quantitatively calculated using
first principles electronic structure computations. Con-
ceptually, these quantitative approaches can be classified
into the ‘‘mapping’’ and ‘‘direct’’ methods. In the
mapping method [10–23], the energies of several
electronic states of a magnetic solid or its fragments
are determined by electronic structure calculations, and
the energy differences between these electronic states are
mapped onto those between the corresponding spin
states determined by an appropriate spin Hamiltonian.
In the direct method [48–51], spin exchange parameters
of a magnetic solid are directly calculated from its
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ground state electronic structure on the basis of
electronic band structure calculations.

4.1. Mapping method

Two different approaches to an extended magnetic
solid are employed in the mapping analysis, i.e., the spin
dimer and band structure approaches. In the spin dimer
approach [16,17], one defines the spin dimer for each
superexchange path of interest as the structural frag-
ment containing the two interacting spin sites. Then the
energies of two different electronic states of the spin
dimer are determined by first principles electronic
structure calculations to carry out the mapping analysis.
Therefore, the spin dimer approach reduces the problem
of studying an extended magnetic solid to that of a
number of spin dimers representing various spin
exchange paths of the solid. In the band structure
approach [21], the electronic energies of a magnetic solid
are determined for a number of states with different spin
arrangements on the basis of electronic band structure
calculations.

4.1.1. Spin dimer approach

The ground and the first excited electronic states of a
spin dimer can be calculated by using the CI wave
function method. Then the excitation energy DEe

between these two electronic states is set equal to the
excitation energy DEs between the ground and the first
excited spin states determined by the Heisenberg spin
Hamiltonian �JŜ1 � Ŝ2: Thus from Eq. (2.7), the spin
exchange parameter for the spin dimer is expressed
as [35]

J ¼

� DEe

1þ 1

2
ðM � NÞ

ðfor Jo0Þ;

DEe

N þ 1

2
ðM � NÞ

ðfor J40Þ:

8>>>>>><
>>>>>>:

ð4:1Þ

However, if the HS and BS electronic states of a spin
dimer are determined by using the DFT method, the
energy difference, EeðBSÞ � EeðHSÞ; between these two
electronic states is equated to that between the HS and
BS spin states determined by the Ising spin Hamiltonian
�JŜ1z � Ŝ2z: Thus from Eq. (2.13), the spin exchange
parameter for the spin dimer is expressed as [23,35]

J ¼ 2½EeðBSÞ � EeðHSÞ	
MN

: ð4:2Þ

In DFT the total energy of an electronic state can be
expanded in Taylor series with respect to the electron
occupation numbers. The transition state (TS) of a spin
dimer (Fig. 1c) can be defined as the state in which each
of the 2N magnetic orbitals (a- and b-spin) of the spin
site 2 has half an electron and the M unpaired electrons
of the spin site 1 are accommodated in the a-spin
magnetic orbitals. Then, the energy difference between
the HS and BS electronic states is expressed as [23]

EeðBSÞ � EeðHSÞ

¼
XN

j¼1

ðebj � eaj Þ na
i
¼1=2; n

b
i
¼1=2 ðall i¼1�NÞ

��� ; ð4:3Þ

where egj (g ¼ a; b) is the jth magnetic orbital (spin g)
energy of the TS. Thus, from Eqs. (2.12) and (2.13), the
spin exchange parameter J is related to the orbital
energy differences of the TS as follows [23].

J ¼ 2

MN

XN

j¼1

ðebj � eaj Þ na
i
¼1=2; n

b
i
¼1=2 ðall i¼1�NÞ

��� : ð4:4Þ

4.1.2. Band structure approach

As discussed in Section 2.2.1, the energies of various
ordered spin states of a magnetic solid can be readily
expressed in terms of the spin exchange parameters
when the Ising Hamiltonian, Eq. (2.15), is employed.
Thus if the energies of the corresponding electronic
states are calculated by performing electronic band
structure calculations on the basis of either DFT or
unrestricted Hartree–Fock theory [21], then the values
of the spin exchange parameters can be determined by
mapping analysis. Let us denote the electronic energies
corresponding to the spin state energies Esð1HSÞ and
Esð1BSÞ of the 1D uniform chain (Fig. 3) as Eeð1HSÞ
and Eeð1BSÞ; respectively. Likewise, we denote the
electronic energies corresponding to the spin state
energies Esð2HSÞ; Esð2BS1Þ and Esð2BS2Þ of the 1D
alternating chain (Fig. 4) as Eeð2HSÞ; Eeð2BS1Þ and
Eeð2BS2Þ; respectively. Then, from Eq. (2.19) the J value
of the 1D uniform magnetic chain is calculated as

J ¼ 2½Eeð1BSÞ � Eeð1HSÞ	: ð4:5Þ

From Eq. (2.22) the J1 and J2 values of the 1D
alternating magnetic chain are calculated as

J1 ¼ 4½Eeð2BS2Þ � Eeð2HSÞ	; ð4:6aÞ

J2 ¼ 4½Eeð2BS1Þ � Eeð2BS2Þ	: ð4:6bÞ

4.2. Direct method

In the direct method [48–51], the spin exchange
parameters of an extended magnetic solid are calculated
from its ground state electronic structure determined
by DFT electronic band structure calculations. In the
muffin-tin potential approximation [52], wave functions
in each atomic sphere are expanded in terms of localized
orthonormal basis jinlmsS (i denotes the atom site, n

the principal quantum number, l the orbital quantum
number, m the magnetic quantum number, and s the
spin index). Within the linear muffin-tin orbital (LMTO)
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Fig. 7. Three electronic configurations of a dimer with one electron

and one orbital per site: (a) Schematic representation of a dimer. (b)

Triplet state ðc1Þ
1ðc2Þ

1: (c) Singlet configuration ðc1Þ
2: (d) Singlet

configuration ðc2Þ
2:
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method [52], Liechtenstein et al. [48] showed that spin
exchange parameters of a magnetic solid are second
derivatives of the ground-state electronic energy with
respect to the magnetic-moment rotation. In terms of
LMTO calculations using the LDA+U functional [53],
the spin exchange parameters of several extended
magnetic solid are determined quantitatively by the
direct method [49–51]. In this approach the spin
exchange parameter Jij between two magnetic ions i

and j of a magnetic solid is given by [49–51]

Jij ¼
X
fmg

I i
mm0wij

mm0m00m00 0I
j
m00m00 0 ; ð4:7Þ

where wij
mm0m00m00 0 is the intersite susceptibility calculated in

terms of the band orbitals and energies. The spin-
dependent potential I i

mm0 for the ith atom in the unit cell
is expressed as

I i
mm0 ¼ V

im
mm0 � V

ik
mm0 ð4:8Þ

in terms of the LDA+U potential V is
mm0 (s ¼ m;k) at the

spin site i: This direct method has led to quantitative
descriptions of spin exchange interactions for several
extended magnetic solids [49–51]. Nevertheless, it is
noted that the LDA+U potential V is

mm0 contains two
empirical parameters, i.e., the screened Coulomb poten-
tial U and exchange potential J: For d electrons these
parameters are related to the Slater integrals [54] Fk as
U ¼ F0 and J ¼ ðF 2 þ F4Þ=14: Namely, the values of Jij

calculated by using Eq. (4.7) depend on these empirical
parameters.
5. Qualitative description of spin exchange interactions

This section is concerned with the question of how to
discuss trends in spin exchange interactions of magnetic
solids on a qualitative level. In essence, electron
localization is responsible for spin exchange interactions
of magnetic solids. Thus we first consider the electronic
structure of a dimer with one electron and one orbital
per site to discuss how electron localization comes
about. Then we examine its implications and discuss
qualitative aspects of spin exchange interactions of
general spin dimers.

5.1. Electron localization and spin exchange interaction

Consider that a spin dimer has two equivalent spin
sites with one electron and one orbital per site (Fig. 7a).
The interaction between the two site orbitals leads to
two molecular levels c1 and c2 with energies e1 and e2;
respectively. The molecular orbitals c1 and c2 represent
bonding and antibonding levels, respectively. Three
electron configurations of interest for this spin dimer
are the triplet configuration FT and the singlet config-
urations F1 and F2 (Fig. 7b–d). When there occurs a
strong chemical bonding between the two sites, the
orbital energy difference De ¼ e2 � e1 becomes large,
and the CI between F1 and F2 is negligible so that the
ground singlet state FS of the spin dimer is well
approximated by F1: In this case of large De; the singlet
state FS is more stable than the triplet state FT ; and the
two electrons are regarded as delocalized [55].

The orbital energy difference De between the levels c1

and c2 is small, when chemical bonding interaction
between the spin sites is weak so that the two electrons
of the dimer are considered as localized. In this case, the
two singlet configurations F1 and F2 become close in
energy, so the CI between F1 and F2 becomes strong
and the ground singlet state FS is described by the linear
combination [8,56]

Fs ¼ C1F1 � C2F2; ð5:1Þ

where the mixing coefficients C1 and C2 have the same
sign and are similar in magnitude (e.g., C1 ¼ C2 ¼ 1=

ffiffiffi
2

p

if De ¼ 0). Using this CI wave function for the singlet
state, Hay et al. [8] analyzed the energy difference
between the triplet and singlet electronic states, DEe ¼
ET � ES; under the assumptions that the orbitals c1

and c2 are determined from a self-consistent-field
(SCF) calculation for the triplet state, and that these
orbitals are linear combinations of two orthogonal
orbitals w1 and w2 located at the spin sites 1 and 2,
respectively.

c1 ¼
1ffiffiffi
2

p ðw1 þ w2Þ; c2 ¼
1ffiffiffi
2

p ðw1 � w2Þ;

/w1jw2S ¼ 0: ð5:2Þ
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Their analysis showed that the energy difference DEe is
expressed as

DEe ¼ ET � Es ¼ �2K12 þ
ðDeÞ2

U11 � J12
; ð5:3Þ

where K12 is the exchange repulsion integral, and U11

and J12 are the Coulomb repulsion integrals, associated
with the site orbitals w1 and w2:
K12 ¼ /12j12S; U11 ¼ /11j11S; J12 ¼ /12j12S:

ð5:4Þ

According to Eq. (4.1), the exchange parameter J of the
Heisenberg Hamiltonian Ĥ ¼ �JŜ1 � Ŝ2 is equal to

J ¼ �DEe ¼ 2K12 �
ðDeÞ2

U11 � J12
: ð5:5Þ

The spin exchange parameter J consists of two terms of
opposite signs, so that it is convenient to write J as

J ¼ JF þ JAF; ð5:6Þ

where the ferromagnetic term JF (40) and the
antiferromagnetic term JAF (o0) are

JF ¼ 2K12; ð5:6bÞ

JAF ¼ ðDeÞ2

U11 � J12
: ð5:6cÞ

Eq. (5.6) provides a basis for discussing spin exchange
interactions in terms of chemical concepts such as
symmetry and overlap [8,9,34]. In general, the exchange
integral K12 is very small so that the spin exchange
cannot be ferromagnetic (i.e., J40) unless the anti-
ferromagnetic term JAF either vanishes or is very small
in magnitude by symmetry. For various spin exchange
paths of a magnetic solid and for a series of closely
related magnetic solids, the (U112J12) term of JAF is
nearly constant and can be considered as the effective
on-site repulsion Ueff : Thus, Eq. (5.6c) is rewritten as

JAFE
ðDeÞ2

Ueff
ð5:6dÞ

and the variation of the JAF values is mainly governed
by that of the ðDeÞ2 values. In the tight-binding
approximation, the orbital energy difference De is
related to the hopping integral t between the spin sites as

De ¼ 2t ð5:7Þ

so that

JAFE
4t2

Ueff
: ð5:6eÞ

If each spin site is represented by non-orthogonal
orbitals f1 and f2 (instead of the orthogonal orbitals
w1 and w2), then the hopping integral is proportional to
the overlap integral S between them [56, Chapter 2]

tpS ¼ f1jf2h i: ð5:8Þ
Consequently,

JAFp� ðDeÞ2p� S2: ð5:9Þ

For an antiferromagnetic exchange interaction (i.e.,
Jo0), the JAF term dominates over the JF term because
the latter is very small. Therefore, trends in antiferro-
magnetic exchange interactions can be discussed on the
basis of the trends in the corresponding JAF values [26].
The latter can be estimated by calculating the associated
De or t values (Section 6). More general cases of spin
exchange interactions will be discussed in Section 5.4.

5.2. Electron correlation and orbital occupancy

It is important to consider the effect of electron
correlation (i.e., electron–electron repulsion leading to
electron localization) on electronic configurations from
the viewpoint of one-electron orbital theory. We first
examine the delocalized- and localized-electron states of
a spin dimer discussed in the previous section, and then
consider the corresponding states of a 1D chain.

In the case of large De; the ground singlet state FS is
well approximated by the configuration F1; in which the
orbital c1 is doubly occupied (Fig. 7c). This occupancy
is energetically favorable in terms of filling the lower-
lying bonding level, but unfavorable because the double
occupancy gives rise to on-site repulsion U11 ¼
/11j11S: The triplet configuration FT ; in which the
orbitals c1 and c2 are each singly occupied (Fig. 7b),
avoids the on-site repulsion at the expense of occupying
the bonding and antibonding levels equally. The singlet
state F1 is more stable than the triplet state FT if
2De4U11: The reverse is true if 2DeoU11 [55]. The
singlet configuration F1 can be used to refer to the
electron-delocalized state.

In the case of small De; the ground singlet state
FS represented by the CI wave function, Eq. (5.1).
Although the configurations F1 and F2 each consist of
doubly occupied orbitals, their weights in FS are nearly
the same when DeE0 so that the occupancy of the
orbitals c1 and c2 orbital is essentially close to unity. In
essence, this situation is similar to that of the triplet state
FT in which the orbitals c1 and c2 are each singly
occupied. In this sense, the electron configuration FT

can be used to refer to the electron-localized state,
regardless of whether the ground state is triplet or
singlet [55].

It is important to recognize the solid-state counterpart
of the above observations. Consider a 1D chain with one
electron and one orbital per site (Fig. 8a). If electron
correlation is neglected, the levels of the bottom half of
the band are each doubly filled, thereby leading to a
metallic state (Fig. 8b). Non-spin-polarized electronic
band structure calculations predict that a system with a
half-filled band is always metallic, which is obviously
incorrect. By analogy with the spin dimer example
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Fig. 9. Orbital occupations of the electron-delocalized and electron-

localized states of a dimer consisting with one electron and one orbital

per site, where the two sites are equivalent: (a) Orbital interaction

between the two sites leading to the bonding and antibonding levels of

the dimer. (b) Orbital occupation of the electron-delocalized state. (c)

Orbital occupation of the electron-localized state.

Fig. 10. Arrangements of two singly filled p-orbitals of a dimer: (a)

Parallel arrangement. (b) Perpendicular arrangement.

Fig. 8. Metallic and magnetic insulating states of a 1D chain with one

electron and one orbital per site: (a) Schematic representation of a 1D

chain. (b) Metallic state. (c) Magnetic insulating state in non-spin-

polarized representation. (d) Magnetic insulating state in spin-

polarized representation.
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discussed above, a magnetic insulating state can be
represented by a band filling in which all the band levels
are each singly filled with up-spin electrons (Fig. 8c) [55].
(From the viewpoint of spin-polarized representation,
the latter is equivalent to filling all the up-spin band
levels singly filled while leaving all the down-spin
band levels unoccupied. In spin-polarized electronic
band structure calculations for this formally ferromag-
netic insulating state, the up-spin and down-spin bands
become split in energy, Fig. 8d.) The metallic and
magnetic insulating states are similar in that they
possess a partially filled band, but they differ in the
way the band levels are occupied. Given the bandwidth
of the 1D chain as W, the metallic state is more stable
than the magnetic insulating state if W4U11; while the
reverse is true if WoU11 [55,57]. The bandwidth W is
equal to 2De: Therefore, the delocalized- and localized-
electron states of a dimer are similar in nature to the
metallic and magnetic insulating states of a solid,
respectively [55].

5.3. Electron correlation and orbital ordering

Electron correlation has an important effect on the
arrangement of singly filled orbitals between adjacent
spin sites (i.e., orbital ordering) [49,58–60]. Suppose that
the sites 1 and 2 of a spin dimer (Fig. 7a) are represented
by the non-orthogonal orbitals f1 and f2; respectively.
If the two sites are equivalent, the energies of the
orbitals f1 and f2 are the same (i.e., e01). The interaction
between the two orbitals give rise to the bonding level e1
and the antibonding level e2 such that the stabilization
of the bonding level is smaller in magnitude than
the destabilization of the antibonding level, i.e.,
ðe2 � e01Þ4ðe01 � e1Þ (Fig. 9a) [56, Chapter 2]. As
discussed in the previous section, the delocalized state
(Fig. 9b) is more stable than the localized state (Fig. 9c)
if U11o2De whereas the reverse is true if U1142De [55].
In the delocalized state, the two-electron two-orbital
interaction stabilizes the system by DE ¼ ð2e1 �
2e01Þp� S; which is enhanced by increasing the overlap
[56, Chapter 2]. For the localized state, the two-electron
two-orbital interaction destabilizes the system by DE ¼
ðe2 þ e1Þ � 2e01pS2; which is reduced by decreasing the
overlap [56, Chapter 2]. As an example, consider the
arrangements of two singly filled p orbitals. When
U11o2De; the stabilization is maximum in the parallel
arrangement (Fig. 10a) but vanishes in the orthogonal
arrangement (Fig. 10b). When U1142De; however, the
destabilization is maximum in the parallel arrangement
(Fig. 10a) and vanishes in the orthogonal arrangement
(Fig. 10b). The orbital ordering phenomenon is ob-
served in magnetic solids of transition metal elements
when their magnetic ions have partially filled degenerate
d-block levels [49,58–60]. This phenomenon is a
manifestation of the fact that in electron-localized states
(i.e., U1142De) a net destabilization results from a two-
electron two-orbital interaction, and this destabilization
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is reduced by decreasing the overlap between the two
orbitals (see Section 7.4) [60].

5.4. Analysis of spin exchange interactions

5.4.1. Spin dimer approach

As discussed in Section 5.1, the magnitude of JAF for
a spin dimer can be estimated in terms of the spin orbital
interaction energy De when the two spin sites are
equivalent (Fig. 11a). If the two spin sites of a spin
dimer are not equivalent, the extent of the spin exchange
interaction is estimated by calculating the net spin
orbital interaction energy ½ðDeÞ2 � ðDe0Þ2	1=2 [26,61] or
(De2De0) where De0 is the energy difference between the
two non-equivalent magnetic orbitals (Fig. 11b). The
De0 value can be estimated from the energies of the
magnetic orbitals calculated for the spin monomers (i.e.,
the structural units containing one spin site) represent-
ing the two spin sites. Obviously, De0 ¼ 0; when the two
spin sites are equivalent. For simplicity of our notation,
we will use the symbol De to represent De for the case of
two equivalent spin sites, and ½ðDeÞ2 � ðDe0Þ2	1=2 for the
case of two non-equivalent spin sites.

In principle, the JAF term can be described in terms of
the hopping integral t rather than the spin–orbital
interaction energy De: For a spin dimer representing an
SSE interaction (through an M2L?L2M spin ex-
change path), the hopping integral t can be determined
by performing fragment molecular orbital analysis [56,
Chapter 3, 62]. Such a spin dimer is made up of two
separate spin monomers with no shared atom between
them. Thus the magnetic orbitals for the two spin sites
can be defined by performing tight-binding electronic
structure calculations for the corresponding spin mono-
mers, and the hopping integral t is determined as the
interaction energy integral between the two magnetic
orbitals. For a spin dimer representing an SE interaction
(through an M2L2M spin exchange path), the two
spin monomers of the spin dimer share an atom or
more. Thus, the shared atoms have to be used in
defining the magnetic orbitals of both spin sites by
Fig. 11. Spin orbital interactions energies De: (a) Spin dimer with two

equivalent spin sites. (b) Spin dimer with two non-equivalent spin sites.
electronic structure calculations. Consequently, the
hopping integral t for SE interactions cannot be
determined by fragment molecular orbital analysis even
with tight-binding electronic structure calculations. This
is why SE interactions are discussed in terms of the
spin orbital interaction energies De calculated for spin
dimers, and the corresponding hopping integrals t are
then estimated as De=2:

When two adjacent spin sites have M and N unpaired
spins, respectively, the overall spin exchange parameter
J is then described by [63]

J ¼ 1

MN

XM
m¼1

XN

n¼1

Jmn: ð5:10Þ

Therefore, the trends in spin exchange parameters can
be discussed in terms of the sum of the spin–orbital
interaction energy squares [64–66],

/ðDeÞ2S ¼ 1

MN

XM
m¼1

XN

n¼1

ðDemnÞ2: ð5:11aÞ

From the viewpoint of non-orthogonal magnetic orbi-
tals, the antiferromagnetic contribution of each term
Demn is zero when the magnetic orbitals fm and fn are
different in symmetry so that Smn ¼ 0; and is negligible
when fm and fn are different in shape so that Smn is
negligibly small. Therefore, only the ‘‘diagonal’’ terms
Demm can contribute significantly in Eq. (5.11a) [64–66].
This point is discussed further below by considering spin
dimers consisting of transition metal ions located at
octahedral sites [67]. It should be noted that for SSE
interactions the /ðDeÞ2S value can be evaluated as
follows

/ðDeÞ2S ¼ 1

MN

XM
m¼1

XN

n¼1

4ðtmnÞ2 ð5:11bÞ

by calculating the tmn values on the basis of fragment
molecular orbital analysis. Here the tmn has the meaning
of the hopping integral between the magnetic orbitals fm
and fn:

When the two spin sites have high-spin d5 ions (i.e.,
M ¼ N ¼ 5), the d-electron configuration of each spin
site is ðt2gÞ3ðegÞ2 (Fig. 12a). Thus each spin site has three
magnetic orbitals (f1;f2;f3) from the t2g-block levels
and two magnetic orbitals (f4;f5) from the eg-block
levels. In terms of these magnetic orbitals, the ðt2gÞ3ðegÞ2
configuration is expressed as ðf1Þ

1ðf2Þ
1ðf3Þ

1ðf4Þ
1ðf5Þ

1:
Then the /ðDeÞ2S value for the interaction between two
adjacent high-spin d5 ions is approximated by

/ðDeÞ2SE
1

5 5

X5
m¼1

ðDemmÞ2: ð5:12Þ

To examine the spin exchange interactions between spin
sites containing different numbers of unpaired spins
(MaN), it is convenient to define the following energy
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Fig. 12. Spin dimers composed of magnetic metal ions at octahedral

sites. (a) Two spin sites have high-spin d5 ions (i.e., M ¼ N ¼ 5). (b)

One spin site has a high-spin d6 ion (M ¼ 4), and the other site a high-

spin d5 ion (N ¼ 5).
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terms

ðDet2gÞ2 ¼ ðDe11Þ2 þ ðDe22Þ2 þ ðDe33Þ2;
ðDeegÞ2 ¼ ðDe44Þ2 þ ðDe55Þ2: ð5:13Þ

As an example, consider the interaction of a high-spin d6

(S ¼ 2) ion with a high-spin d5 (S ¼ 5=2) ion (Fig. 12b).
A high-spin d6 (S ¼ 2) ion is described by the
configuration ðt2gÞ4ðegÞ2: From the viewpoint of the
magnetic orbitals fm (m ¼ 125), the three configurations

ðf1Þ
2ðf2Þ

1ðf3Þ
1ðf4Þ

1ðf5Þ
1;

ðf1Þ
1ðf2Þ

2ðf3Þ
1ðf4Þ

1ðf5Þ
1;

ðf1Þ
1ðf2Þ

1ðf3Þ
2ðf4Þ

1ðf5Þ
1

should contribute equally to ðt2gÞ4ðegÞ2: The spin
exchange between the high-spin d6 (S ¼ 2) and high-
spin d5 (S ¼ 5=2) ions results only from interactions
between singly filled orbitals. Consequently, the
/ðDeÞ2S value for the spin exchange interaction can
be approximated by

/ðDeÞ2SE
1

4 5

2

3
ðDet2gÞ2þðDeegÞ2

� �
: ð5:14Þ

To generalize this analysis, we assume that one spin site
has mt and me unpaired spins in the t2g-and eg-block
levels, respectively (M ¼ mt þ me), while the other spin
site has nt and ne unpaired spins in the t2g- and eg-block
levels, respectively (N ¼ nt þ ne). Then it is straightfor-
ward to show that the /ðDeÞ2S value can be approxi-
mated by

/ðDeÞ2SE
1

MN

mt

3
 nt

3
ðDet2gÞ2 þ

me

2
 ne

2
ðDeegÞ2

h i
:

ð5:15Þ
The analysis given above can be extended in a similar
manner to other cases of magnetic transition metal
ions [66].

From the spin orbital interaction energy Demm
calculated for a spin dimer, the corresponding hopping
integral can be estimated as tmm ¼ Demm=2: Thus, each
antiferromagnetic component of the Jmm term Jmm;AF ;
is related to Demm and tmm as follows

Jmm;AFE� ðDemmÞ2

Ueff
¼ �4ðtmmÞ2

Ueff
: ð5:16Þ

Since the effective on-site repulsion is nearly constant
for a given system, the antiferromagnetic component of
the overall spin exchange parameter J of the spin dimer
can be written as [66]

JAFE
/ðDeÞ2S

Ueff
: ð5:17Þ

It should be noted that /ðDeÞ2S reduces to ðDeÞ2 when
M ¼ N ¼ 1:

5.4.2. Band structure approach

In discussing the magnetic properties of a magnetic
insulator on the basis of first principles DFT electronic
band structure calculations, it is common to calculate
the electronic band structure for its normal metallic state
and then extract information necessary for describing
the magnetic properties from the partially filled bands of
the metallic state [68]. The dispersion relations of the
partial bands can be simulated with those of tight-
binding bands that result from a set of hopping integrals
t: Using a set of the hopping integrals t that provides the
best fitting, one can discuss the JAF values in terms of
24t2=Ueff ; where the effective on-site repulsion Ueff

value is treated as an empirical parameter.
The ground electronic structure of a magnetic solid is

not metallic, so it is conceptually unsatisfactory to
deduce information about the magnetic insulating state
using the electronic band structure of the metallic state.
In the first principles DFT approach, a spin-ordered
magnetic insulating state is described by spin-polarized
electronic structure calculations. In such calculations,
the dispersion relations of the up-spin bands are not
exactly the same as those of the down-spin bands.
Therefore, the use of the up- and down-spin bands in the
fitting analysis will lead to two different sets of hopping
integrals. In contrast, the electronic band structure of
the normal metallic state provides one set of hopping
integrals because the up- and down-spin bands have
identical dispersion relations. Thus, though concep-
tually inelegant, it is convenient and expedient to use the
electronic band structure of the metallic state in
deducing information about the spin exchange para-
meters of a magnetic insulator. Even in this case, it
should be pointed out that the hopping integrals t

derived from the band structure approach are fitting
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parameters, so their magnitudes depend on the set of
hopping integrals used for the fitting. In addition, these t

values do not provide direct information concerning
how their magnitudes are governed by the local
structural and electronic factors of the spin sites.
Fig. 13. Three elements of structure–property correlation studies.
6. Extended Hückel tight binding method

Despite its highly semi-empirical nature, the EHTB
method [29] has been indispensable over the past three
decades and half in unraveling structure–property
relationships in all kinds of materials, from molecules
to solids, from organic to inorganic compounds [56,69].
In recent years, the EHTB method has also been found
indispensable in understanding the trends in spin
exchange interactions of various magnetic solids (see
Section 7). Since this method does not include any
electron correlation, one might question the validity of
using this method in describing spin exchange interac-
tions of magnetic solids, which are after all a manifesta-
tion of strong electron correlation. As discussed in
Section 5.2, however, the essential consequence of
electron correlation for a magnetic system is that its
ground electronic state is described by an electron-
localized configuration with an appropriate number of
singly occupied levels. Therefore, use of EHTB calcula-
tions for magnetic solids becomes appropriate as long as
one employs proper electron-localized configurations.

For strongly correlated systems, even the state-of-the-
art DFT electronic structure calculations often fail to
produce correct electron-localized states. Currently, this
problem is fixed by using the LDA+U potential [53],
which introduces empirical parameters into first-princi-
ples electronic structure calculations (Section 4.2). From
the viewpoint of the ideal of first principles electronic
structure theory, the LDA+U method is not elegant.
Nevertheless, given a task to explain experimental
observations, it is preferable to have correct explana-
tions using an inelegant theory rather than incorrect
explanations using an elegant theory. The validity of
EHTB calculations should be viewed in this spirit. In
understanding the relationships between crystal struc-
tures and physical properties of solid state materials, it is
necessary to calculate their electronic structures (Fig.
13). What level of calculations to employ depends on
what kinds of answers we seek from calculations. The
EHTB method can be invaluable if one asks the kinds of
qualitative questions that it can answer (for a recent
review see Ref. [69]).

6.1. Basis of the EHTB method

In the EHTB method the molecular or crystal orbitals
ci (i ¼ 1; 2;y;m) of a system are expressed as linear
combinations of its valence atomic orbitals w1; w2; w3;y
and wm:

ci ¼
Xm

m¼1

Cmiwm: ð5:18Þ

The valence atomic orbitals are approximated by Slater
type orbitals (STOs). A single-zeta (SZ) STO, wm; is
defined by

wmprn�1 expð�zrÞYðy;fÞ; ð5:19aÞ

where n is the principal quantum number, z is the
exponent, and Yðy;fÞ is the spherical harmonics. In a
double-zeta (DZ) STO, a linear combination of two
exponential functions is used

wmprn�1 ½c1 expð�z1rÞ þ c2 expð�z2rÞ	Yðy;fÞ: ð5:19bÞ

The orbital ci is the eigenfunction of the effective one-
electron Hamiltonian, Heff ;

Heffci ¼ eici: ð5:20Þ
In the EHTB method the explicit form of Heff is not
specified, but its matrix representation, Hmn ¼
/wmjHeff jwnS; in atomic orbital basis is defined semi-
empirically. Namely, the diagonal element Hmm is
approximated by the valence state ionization potential
(VSIP) of the atomic orbital wm [70,71]

Hmm ¼ �VSIP ð5:21aÞ
and the off-diagonal elements Hmn is approximated
by the Wolfsberg–Helmholz formula [70],

Hmn ¼
1

2
KSmnðHmm þ HnnÞ; ð5:21bÞ

where Smn is the overlap integral Smn ¼ /wmjwnS and K ¼
1:75: In the weighted Wolfsberg–Helmholz approxima-
tion [72], the coefficient K is replaced with another
coefficient K 0; which is given by

K 0 ¼ K þ D2 þ D4ð1� KÞ; ð5:22Þ
where D ¼ ðHmm � HnnÞ=ðHmm þ HnnÞ: The weighted
Wolfsberg–Helmholz approximation is used to reduce
the extent of counter-intuitive orbital mixing [72,73].
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The energies ei; and the atomic orbital coefficients Cmi of
the orbitals ci are obtained by solving the set of
simultaneous equations,Xm

m¼1

ðHmi � eiSmiÞCmi ¼ 0 ði ¼ 1; 2;y;mÞ: ð5:23Þ

The semi-empirical parameters of EHTB calculations
are the z values for single-zeta STOs, the z1; z2; c1 and
c2 values for double-zeta STOs, and the VSIP values of
the valence atomic orbitals. These values can be taken
from results of atomic electronic structure calculations
using the Hartree–Fock method [74,75].

6.2. Strengths and weaknesses of the EHTB method

The approximations of the EHTB method leading to
Eq. (5.23) are very crude, so it has serious drawbacks
that first principles electronic structure theories do not
have. For example, EHTB calculations cannot be used
to predict either the optimum structure of a system or
the relative energies of a system with different electron
configurations. For systems of known geometry, how-
ever, EHTB calculations provide valuable information
about their electronic properties. In EHTB calculations
the total energy of a system is given by the sum of its
occupied orbital energies. Thus, for a molecule with two
electrons to fill its HOMO and LUMO, EHTB
calculations predict that the closed-shell singlet state is
always more stable than the triplet state in disagreement
with experiment. When EHTB calculations give a small
HOMO–LUMO gap for a molecule, one should expect
that the ground state of the molecule might be a triplet
state. Similarly, EHTB calculations predict that a solid
with a partially filled band is always metallic in conflict
with experiment. If EHTB calculations give a narrow
partially filled band for a solid, one should expect that
the solid might be a magnetic insulator rather than a
metal.

The fact that EHTB calculations do not depend on
the number of electrons in a system leads to advantages
that no first principles theory can ever match:
(1)
 EHTB calculations are simple and hence enable the
study of molecular and extended solids too large to
study using first principles electronic structure
calculations. The simplicity of the EHTB method
does not necessarily mean that the electronic
structures it generates are unreliable.
(2)
 The electronic structure of a complex system can be
approximated by that of its appropriate fragment.
For example, in an organic conducting salt (BEDT-
TTF)2X with mononegative anion X�; layers of the
(BEDT-TTF)2

+ cations alternate with layers of the
X� anions. The cation layers are primarily respon-
sible for the transport and magnetic properties of
the salt, and are well separated from each other.
Therefore, the electronic structure of a (BEDT-
TTF)2X salt is well approximated by that of an
isolated cation layer [76]. In EHTB calculations,
this approximation is valid and simplifies the task of
calculations enormously.
(3)
 The local electronic structure of a transition metal
ion M surrounded with n main group ligand atoms
L in its first coordination sphere is well approxi-
mated by the d-block electronic structure calculated
for the complex MLn. For the purpose of electron
counting for the d-block levels, each ligand is
treated as a closed shell anion. For example, the
magnetic solid CaV4O9 (see Section 7.6) is made up
of edge- and corner-sharing VO5 square pyramids,
and the vanadium and oxygen atoms of CaV4O9

have the oxidation states +4 and �2, respectively.
Consequently, a spin monomer unit is represented
by (VO5)

6�, an edge-sharing spin dimer by
(V2O8)

8�, a corner-sharing spin dimer by
(V2O9)

10�. The highly charged anion state of these
species does not present a computational problem
in EHTB calculations, because the latter do not
depend on the number of electrons a system has,
unlike the case of first principles calculations. To
carry out first-principles electronic structure calcu-
lations for a highly charged anion species, it is
necessary to embed the anion in an appropriate
matrix of positive point charges to create a realistic
potential for each atom of the anion species [77]. A
desirable outcome is not necessarily guaranteed
from such first-principles calculations because SCF
iterations may cause oscillations between two
different states rather than converging to one state
and because the state reached by SCF convergence
may not be a physically meaningful one.
For the reasons presented above, EHTB calculations
have been extensively used to study qualitative struc-
ture–property relationships in a variety of molecules and
solids [56,69]. When results of EHTB calculations for
molecules or solids of known structure are not
consistent with their physical properties, it is necessary
to examine several possible sources leading to this
disagreement before resorting to first principles electro-
nic structure calculations:
(1)
 The failure stems from the assumptions inherent in
all electronic structure theories. As discussed in
Sections 5.1 and 5.2, one needs to consider that
the low-spin is not necessarily more stable than the
high-spin states in a molecule, and that the metallic
state is not necessarily more stable than the
magnetic insulating states in a solid.
(2)
 The failure originates from the use of EHTB
approximations. In this case, it is important to
analyze the source of the failure from the viewpoint
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of the atomic parameters employed (e.g., the VSIP
values and the exponents of the STOs), modify the
parameters appropriately, and repeat calculations.
In spirit, this process is similar to what one does
with first-principles calculations. For example,
when a chosen basis set or correlation level does
not give correct results, one tries another basis set
or correlation level.
(3)
 Results of EHTB calculations for a system depend
sensitively on the geometry used for calculations.
Since EHTB calculations cannot be used for
geometry optimization, it is critical to question if
the geometry employed is reliable. This is particu-
larly true for studies of spin exchange interactions
[26].
(4)
 It is possible that experimental results under
examination are incorrect. This is particularly true
for electron transport and magnetic properties of
solids that are easily affected by unsuspected
impurities in samples.
6.3. Parameters of EHTB calculations

In general, results of EHTB calculations depend more
sensitively on the exponents of STOs than on their
VSIPs. For metallic compounds consisting of transition
metal elements M and main group elements L; it was
customary to use DZ-STOs for the d-orbitals of M and
SZ-STOs for the s=p-orbitals of L [78]. However, use of
DZ-STOs for both in EHTB calculations leads to a
better agreement with experiment and first principles
electronic structure calculations [79,80]. For conducting
salts of organic donor molecules as well, use of DZ-
STOs provides a better description of the overlap
between adjacent molecules and hence a better descrip-
tion of their electronic structures [76,81]. In reproducing
trends in spin exchange interactions of magnetic solids
of transition metal elements, use of DZ-STOs for the
d-orbitals of M and DZ-STOs for the s=p-orbitals of
L is essential [26,82].

In a DZ-STO, Eq. (5.19b), the exponents z1 and z2
describe contracted and diffuse STOs, respectively (i.e.,
z14z2). The diffuse STO provides an orbital tail that
enhances overlap between L atoms in the short L?L

contacts of the M2L?L2M super-superexchange
paths as well as that between M and L in the
M2L2M superexchange paths [26,82]. The spin–
orbital interaction energy De values are affected most
sensitively by the exponent z2 of the diffuse p-orbital of
L: The z2 values taken from results of atomic electronic
structure calculations [74,75] can be too diffuse. In this
case, they can be increased as ð1þ xÞz2; where one
should determine the optimum x value by studying spin
exchange interactions of a reference compound as a
function of x [82]. For example, for the oxygen 2p
orbital the x-value appropriate for spin exchange
interactions of some magnetic oxides is found to be
in the range of 0.10–0.13 [82]. Hereafter the oxygen
2p orbital for x ¼ 0 will be referred to as the
uncalibrated orbital, that for x ¼ 0:1020:13 as the
calibrated orbital.

6.4. Comparison with the DFT method

In the CI wave function method, the Hartree–Fock
equations solve the exact Hamiltonian (i.e., the mole-
cular Hamiltonian) with approximate many-body wave
functions (i.e., Slater determinants), and the exact
solution can be achieved through systematic improve-
ments in the form of many-body wave functions such
as CI wave functions [83]. In this approach, atomic
orbitals and hence molecular orbitals are used as basis
functions to improve the form of many-body wave
functions, so that orbital concepts as practiced by
chemists disappear.

In contrast, approximations in DFT are introduced
only in the exchange-correlation operator. The density
functional equations solve an approximate many-body
Hamiltonian with exact wave functions, and DFT
approaches the exact solution by improving the
exchange-correlation operator [83]. Therefore, orbital
concepts as practiced by chemists remain valid in DFT.
From the perspective of the EHTB method, first
principles DFT electronic structure calculations are
akin to doing EHTB calculations in which the para-
meters of calculations (i.e., the orbital exponents and
VSIP values) are adjusted self-consistently as a function
of electron density distribution. Results of DFT
electronic structure calculations can be readily inter-
preted by employing the concepts of orbital interactions
on the basis of EHTB calculations [84–86].
7. Spin dimer analysis of the spin exchange interactions

and magnetic structures of extended magnetic solids

Over the past several years our studies [26] on
numerous magnetic solids have shown that the relative
strengths of SE and SSE interactions can be estimated
almost semiquantitatively using spin dimer analyses
based on EHTB calculations. In this section we survey
the spin exchange interactions and magnetic structures
of various magnetic solids studied by this method. When
available, spin exchange parameters deduced from
experiment and calculated from first principles electro-
nic structure computations will be compared with the
corresponding /ðDeÞ2S values obtained by EHTB
calculations. In this section, the s; px; py; pz; dxy; dxz;
dyz; d3z2�r2 and dx2�y2 atomic orbitals will be referred
as s; x; y; z; xy; xz; yz; 3z2 � r2 and x2 � y2 orbitals,
respectively.
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Fig. 14. Comparison of the experimental spin exchange parameters

Jexp of perovskite magnetic solids with the calculated values Jcalc

obtained from first-principles electronic structure computations and

the /ðDeÞ2S values obtained from EHTB calculations: (a) J vs. J :
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7.1. Comparison between first principles and EHTB

calculations

It is important to see how the /ðDeÞ2S values scale
with the experimental spin exchange parameters J and
the calculated J values obtained from first principles
electronic structure computations. We examine this
question by considering the two classes of magnetic
solids whose experimental J values were examined by
both first principles and EHTB electronic structure
calculations.

The magnetic properties of three-dimensional (3D)
perovskites KNiF3 and KCuF3 as well as the layered
perovskites K2NiF4, K2CuF4 and La2CuO4 were exten-
sively studied both theoretically [87–91] and experimen-
tally [92–101]. These compounds are made up of corner-
sharing ML6 octahedra. The ML6 octahedra of KNiF3

are regular in shape [101], while those of K2NiF4 [102],
K2CuF4 [103], La2CuO4 [104] and KCuF3 [105] are
distorted. The oxidation state of the transition metal
atoms is +2 in these compounds. Thus each Cu2+ (d9)
ion has one unpaired spin, and each Ni2+ (d8) ion two
unpaired spins. As summarized in Table 4 and Fig. 14a,
the experimental J values of these compounds are
almost quantitatively reproduced by the calculated
J values from first principles electronic structure
computations [87–91]. Table 4 and Fig. 14b also show
that the experimental J values and the calculated
/ðDeÞ2S values have a good linear relationship.

The magnetic solids A2MnF5 (A¼ Rb;Cs;NH4;Na;Li)
[106–110] contain MnF5 chains made up of trans-corner
sharing MnF6 octahedra, and their high-spin Mn3+ (d4)
cations each have four unpaired spins. Each MnF6
Table 4

Comparison of the experimental spin exchange parameters Jexp with

the calculated Jcalc values from first-principles computations and the

/ðDeÞ2S values from EHTB calculations

Compound Jexp (meV) Jcalc (meV) �/ðDeÞ2S (meV)2

K2CuF4 1.5a, 1.9b 1.21j �140

KCuF3 �33c, �34d, �35e �31.3j �25,900

0.34e 0.56k �400

K2NiF4 �8.2f, �9.5f �8.10j �9700

KNiF3 �7.7g �7.41j �8600

La2CuO4 �128h, �134i �144.7j �102,000

aYamada [97].
bHirakawa and Ikeda [98].
cKatoda [94].
dHutchings et al. [95].
eSatija et al. [96].
f de Jong and Miedema [93].
gLines [92].
hSingh et al. [99].
iAeppli [100].
jMoreiro et al. [90].
kMoreiro and Illas [87].

exp calc

(b) Jexp vs. /ðDeÞ2S:
octahedron has a Jahn–Teller distortion such that the
two axial Mn–F bonds along the z-axis become longer
than the four equatorial Mn–F bonds. Thus in the d-
block levels of a distorted MnF6 octahedron, the x2 � y2

level (contained in the equatorial plane) is empty
while the remaining four d-levels are each singly
filled, so that M ¼ N ¼ 4 for the spin dimers. Table 5
lists the intrachain J values of A2MnF5 (A¼ Rb;Cs;
NH4;Na;Li) determined experimentally [106–110],
those obtained by DFT electronic structure calculations
[23], and the /ðDeÞ2S values. The J values from the
DFT calculations are greater than the experimental ones
(Fig. 15a) by a factor of B3. The /ðDeÞ2S values show a
good linear relationship with the experimental J values
(Fig. 15b).

As can be seen from the above two examples, the
/ðDeÞ2S values obtained from EHTB calculations scale
linearly with the experimental spin exchange parameters
J; and with the calculated J values from first principles
electronic structure computations. This provides a
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Fig. 15. Comparison of the experimental spin exchange parameters

Jexp of A2MnF5 (A ¼ Rb;Cs;NH4;Na;Li) with the calculated values

Jcalc obtained from first-principles electronic structure computations

and the /ðDeÞ2S values obtained from EHTB calculations: (a) Jexp vs.

Jcalc: (b) Jexp vs. /ðDeÞ2S:

Table 5

Comparison of the experimental spin exchange parameters Jexp of

A2MnF5 ðA ¼ Rb;Cs;NH4;Na;LiÞ with the calculated Jcalc values

from DFT first-principles computations and the /ðDeÞ2S values from

EHTB calculations

Compound Jexp (K/kB) Jcalc

(K/kB)
�/ðDeÞ2S
(meV)2

Rb2MnF5 �22.6a �73f �2280

Cs2MnF5 �19.4a �63f �1960

(NH4)2MnF5 �11.2b, �10.6c, �10.45d �43f �500

Na2MnF5 �9.2e, �8.6d, �8.25b �26f �130

Li2MnF5 �6.3b, �5.6e �24f �190

aNúñez and Roisnel [106].
bSears and Hoard [107].
cHirakawa and Ikeda [98].
dEmori et al. [110].
eMassa [109].
fDai and Whangbo [23].
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justification for the use of /ðDeÞ2S values obtained
from EHTB calculations in estimating the relative
strengths of spin exchange interactions in magnetic
solids. Additional examples of a good linear relationship
between the /ðDeÞ2S and the experimental J values and
that between the /ðDeÞ2S and the calculated J values
are discussed in Sections 7.6 and 7.7.

7.2. Importance of bond length consideration

In predicting whether a given M2L2M super-
exchange interaction is ferromagnetic or antiferromag-
netic without any electronic structure calculations,
Goodenough rules [24] are employed. Given the
symmetry properties of the metal d-orbitals containing
unpaired spins and the number of unpaired spins at the
metal site M; these rules predict the sign of an
M2L2M superexchange (i.e., minus for antiferromag-
netic and plus for ferromagnetic) on the basis of the
+M2L2M bond angle. An implicit assumption
introduced in these rules is that there is no strong
variation of the M2L bond lengths in the M2L2M

superexchange paths to compare. When this assumption
is not valid, it is critical to take into consideration how
the M2L bond length affects the strength of the
M2L2M superexchange. We illustrate this point
by considering the magnetic structure of marokite
CaMn2O4 [111].

CaMn2O4 consists of corner- and edge-sharing MnO6

octahedra containing high-spin Mn3+ (d4) ions. All
the Mn3+ ions are equivalent in CaMn2O4, but the
Jahn–Teller distortion of each MnO6 octahedron makes
all its six Mn–O bonds different [111] (e.g., 1.897, 1.910,
1.923, 1.958, 2.361 and 2.449 Å). Thus every Mn3+ ion
has six different superexchange interactions with its
neighboring Mn3+ ions. In these superexchange paths
both the +Mn–O–Mn bond angles and the Mn–O bond
lengths vary widely. A perspective framework view of
the Mn2O4 lattice is shown in Fig. 16, where the Mn
sites labeled A through G specify the six different
superexchange interactions that a given Mn3+ site can
have, i.e., (A2B), (A2C), (A2D), (A2E), (A2F ) and
(A2G). Table 6 summarizes the geometrical parameters
associated with these Mn–O–Mn superexchange paths
[111]. It is noted that the Mn–O–Mn bridges are
symmetric in the paths (A2B) and (A2C), slightly
asymmetric in the path (A2E), and highly asymmetric
in the paths (A2D), (A2F ) and (A2G). In addition, in
the symmetric and nearly symmetric superexchnage
paths, the Mn–O bond lengths increase in the order,
ðA2CÞoðA2EÞoðA2BÞ: Table 6 also lists the signs of
the six superexchange interactions determined from the
powder neutron diffraction study [111], and the signs of
these interactions assigned on the basis of Goodenough
rules [24,111].
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The spin monomers of CaMn2O4 are given by
(MnO6)

9�, while the spin dimers with a corner- and
edge-sharing MnO6 octahedra by (Mn2O11)

16� and
(Mn2O10)

14�, respectively. Table 7 summarizes the
/ðDeÞ2S values calculated for the six superexchange
paths [66]. The relative strengths of the spin exchange
interactions, calculated using the largest /ðDeÞ2S value
as the reference, show that the strengths of the AFM
interactions decrease in the order, ðA2CÞ4ðA2EÞ4
ðA2BÞbðA2DÞ4ðA2GÞ4ðA2FÞ: This finding is
Table 6

Geometrical parameters associated with the six Mn–O–Mn superexchange p

Interaction Mn–O–Mn (Å) +Mn–O–M

(A2B) 1.958/1.958 102.0

2.445/2.445 76.9

(A2C) 1.897/1.897 135.6

(A2D) 2.361/1.923 94.0

1.958/2.445 90.6

(A2E) 1.910/1.923 98.4

1.923/1.910 98.4

(A2F ) 2.361/1.910 96.2

1.910/2.361 96.2

(A2G) 1.958/2.445 167.5

aTaken from the crystal structure of Ref. [111].
bFM and AFM refer to ferromagnetic and antiferromagnetic, respectively

Fig. 16. Framework view of the 3D Mn2O4 lattice, where the large and

small circles refer to Mn and O atoms, respectively. The Mn sites

labeled A through G are used to specify six different superexchange

interactions (A2B), (A2C), (A2D), (A2E), (A2F ) and (A2G).
entirely consistent with the magnetic structure of
CaMn2O4 determined by the neutron powder diffraction
study [111].

The strongest AFM interaction occurs in the path
(A2C). The structure of the spin dimer representing the
(A2C) interaction is depicted in Fig. 17, where the four
magnetic orbitals are xz; xy; yz and z2: Note that the
Mn–O–Mn bridge of this spin dimer is symmetric and is
made up of the shortest Mn–O bonds. Consequently,
two of the four magnetic orbitals (i.e., ‘‘xz’’ and ‘‘xy’’
orbitals) on each spin site give rise to two strong p-type
orbital interactions through the Mn–O–Mn bridge
(Fig. 18a and b) [78]. In each p-type orbital interaction,
the 2p orbital of the bridging oxygen is absent in the
lower level cþ; but contributes strongly out-of-phase to
the Mn 3d orbitals in the upper level c� because the
Mn–O–Mn bridge is symmetric and because the Mn–O
bonds are short (i.e., Mn–O=1.897/1.897 Å, Table 6).
Consequently, the energy split between the cþ and c�
levels (i.e., the spin–orbital interaction energy De) is
large for the ‘‘xz’’ and ‘‘xy’’ magnetic orbitals. The
remaining two magnetic orbitals (i.e., ‘‘yz’’ and ‘‘z2’’
orbitals) of each spin site lead to a negligible De because
the 2p orbital of the bridging oxygen cannot contribute
to both cþ and c� by symmetry (Fig. 18c) and because
the 2p orbital of the bridging oxygen contribute very
able 7

ðDeÞ2S and relative �JAF values calculated for the six superexchange

teractions of CaMn2O4

teraction /ðDeÞ2Sa Relative �JAF
b

2B) 1030 0.40

2C) 2540 1.00

2D) 570 0.22

2E) 1830 0.72

2F ) 170 0.07

2G) 300 0.12

aThese values, presented in units of (meV)2, were calculated using

e crystal structure of Ref. [111].
T

/
in
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bThe path (A2C) was taken as the reference.
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weakly to both cþ and c� by orbital mismatch
(Fig. 18d). Due to the two strong p-type orbital inter-
actions, the spin exchange path (A2C) becomes
strongly antiferromagnetic.

The second strongest antiferromagnetic interaction
occurs in the path (A2E), where the two Mn–O–Mn
bridges are only slightly asymmetric (Mn–O=1.910/
1.923 Å) and the bridging Mn–O bonds are relatively
Fig. 18. Pairs of the singly occupied molecular orbitals cþ and c� defin

superexchange path (A2C). In (a)–(d), the symmetries of the magnetic orbita

the lower-lying MnO6 octahedron in the spin dimer.

Fig. 17. Arrangements of the Mn–O bonds in the spin dimer

representing the superexchange path (A2C). The six Mn–O bonds

of the lower-lying MnO6 octahedron are aligned along the Cartesian

coordinate axes as close as possible (i.e., the bonds b=a along the x-

direction, the bonds c=d along the y-direction, and the bonds f =e along

the z-direction).
short. The third strongest antiferromagnetic interaction
occurs in the path (A2B), in which both Mn–O–Mn
bridges are symmetric, and the bridging Mn–O bonds
are relatively long (Mn–O=1.958/1.958 Å) in one
bridge and very long in another bridge (Mn–O=
2.445/2.445 Å). The decrease in the strength of the
antiferromagnetic interaction in the order, ðA2CÞ4
ðA2EÞ4ðA2BÞ; is readily explained by considering
that the extent of a p-type orbital interaction
through a symmetric (or nearly symmetric) Mn–O–Mn
bridge decreases with increasing the Mn–O bond length.

The fact that the paths (A2F ) and (A2G) are FM,
i.e., their antiferromagnetic interactions are very weak,
can be easily understood because the Mn–O–Mn bridges
are strongly asymmetric (e.g., Mn–O=1.910/2.361 Å in
the path (A2F ) and Mn–O=1.958/2.445 Å in the path
(A2G)) so that the energy split between the cþ and c�
levels becomes very small for each magnetic orbital. The
two Mn–O–Mn bridges of the path (A2D) are quite
asymmetric as well (i.e., Mn–O=1.923/2.361 Å; 1.958/
2.445 Å), so the extent of antiferromagnetic interaction
in the path (A2D) would be weak. On the basis of
inspecting the asymmetry of the Mn–O–Mn bridges
alone, it is impossible to predict if the antiferromagnetic
interaction of the path (A2D) will be as weak as those
of the paths (A2F ) and (A2G). Certainly, calculations
of /ðDeÞ2S allow one to estimate the relative strengths
of such interactions.
ing the spin orbital energies De in the spin dimer representing the

ls at the spin sites were classified with respect to the d-block orbitals of
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Fig. 19. Arrangements of the V and O atoms in the V1–V2 and V3–V4 ribbon-chains in the ambient pressure orthorhombic structure of (VO)2P2O7.

For simplicity, only the V and the basal oxygen atoms of the VO5 square pyramids are shown.

Fig. 20. Perspective views along the b-direction of the (a) V1–V2 and

(b) V3–V4 ribbon-chains in the ambient pressure orthorhombic

structure of (VO)2P2O7. The O?O distances are as follows:

O(11)?O(13)=2.506 Å, O(12)?O(14)=2.572 Å, O(15)?O(17)=

q2.510 Å, O(16)?O(18)=2.510 Å.
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7.3. Importance of super-superexchange interactions

7.3.1. Vanadyl pyrophosphate (VO)2P2O7

The recent interest in the ambient pressure orthor-
hombic (APO) phase of vanadyl pyrophosphate (VPO),
(VO)2P2O7, has been in the area of its magnetic
properties [25,26]. The magnetic susceptibility of VPO
was found well described by the spin-1/2 alternating
antiferromagnetic chain model [115], and subsequently
by the spin ladder model [112,113], However, later
studies showed conclusively that the spin-1/2 alternating
antiferromagnetic chain model is correct for VPO
[26,114,116].

The magnetic lattice of VPO is made up of VO5

square pyramids containing V4+ (d1) ions. The VO5

square pyramids form V2O8 dimers by sharing one basal
O–O edge. The structural feature of VPO leading to the
spin-1/2 alternating antiferromagnetic chain model is
the ‘‘ribbon-chains’’ along the crystallographic c-direc-
tion, in which adjacent V2O8 dimers are linked by two
O–P–O bridges such that the basal planes of the dimers
form ribbons. There are two non-equivalent ribbon-
chains in the APO phase of VPO, as depicted in Fig. 19,
where only the vanadium and the basal oxygen atoms of
the VO5 square pyramids are shown for simplicity. The
perspective views along the b-direction of the V1–V2
and V3–V4 ribbon-chains are presented in Fig. 20.
Along each ribbon-chain, the SE interactions, which
occur through the V–O–V linkages within each V2O8

dimer, alternate with the SSE interactions, which occur
through the V–O?O–V linkages between adjacent
V2O8 dimers. A perspective view of how the V2O8

dimers repeat along the a-direction is shown in Fig. 21a,
which has a ladder-like arrangement of the magnetic
ions (Fig. 21b). The structural feature of the latter led
to the interpretation of the magnetic property of VPO
in terms of the ladder model [112,113], which was soon
found to be incorrect for VPO [114,116].

The magnetic orbitals of the spin monomers, i.e., the
(VO5)

6� square pyramids, are contained in the planes
parallel to the basal planes (Fig. 22a). The spin dimers
for SE and SSE paths are represented by (V2O8)

8� and
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Fig. 22. (a) Magnetic orbital of a VO5 square pyramid, in which the V

3d xy orbital is combined out-of-phase with the O 2p orbitals on the

basal plane. (b) Overlap between two adjacent magnetic orbitals

associated with an SSE interaction along a ribbon-chain. (c) d-type
overlap between the magnetic orbitals in a spin dimer along the a-

direction. (d) Overlap between the magnetic orbitals associated with an

SSE interaction between adjacent ribbon chains.

Table 8

Comparison of the De and J values calculated for the superexchange

and super-superexchange interactions in the V3–V4 and V1–V2 ribbon

chains of the ambient pressure structures of (VO)2P2O7

Chain Spin

exchange

De
(meV)

�J=kB

(K)a
�J=kB

(K)b

V3–V4 SSE 42 136 136

V3–V4 SE 33 84 92

V1–V2 SSE 35 94 103

V1–V2 SE 40 123 124

aThe J values were calculated from the expression J ¼ �ðDeÞ2=Ueff

with Ueff = 151meV.
bThe experimental values taken from Ref. [116].

Fig. 21. (a) Perspective view of how the V2O8 dimers repeat along the

a-direction in the ambient pressure orthorhombic structure of

(VO)2P2O7. (b) Ladder-like arrangement of the magnetic ions in (a).
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(V2O10)
12�, respectively. Each SSE interaction along the

ribbon-chain is determined by the overlap between the O
2p orbitals of the O?O contacts in the two SSE paths
V–O?O–V (Fig. 22b). The O?O distances of the
V–O?O–V paths are considerably shorter than the van
der Waals distance (i.e., 2.80 Å). The magnitude of this
interaction should increase, as the O?O distances
decrease, as the O4 ring formed from the two O?O
contact units becomes more planar and rectangular, and
as the basal planes of the two spin monomers become
more parallel [26]. Along the a-direction, the two
magnetic orbitals of a spin dimer have a d-type
interaction (Fig. 22c), so the associated De value is
negligible. The interchain SSE interaction between
magnetic orbitals is weak because along the short
O?O contact directions one oxygen p orbital lies
almost in the nodal plane of the other oxygen p orbital
(Fig. 22d) [117].

Only recently accurate crystal structures were deter-
mined for the APO phase of VPO [26,118], which led to
accurate evaluations of the ðDeÞ2 values for the SE and
SSE interactions (Table 8) [26]. The J=kB value of the
strongest antiferromagnetic interaction deduced experi-
mentally is �136K [114]. This J is reproduced by JAF ¼
�ðDeÞ2=Ueff if the Ueff value is taken as 151meV. Using
this Ueff we calculate the J values expected for the SE
and SSE interactions on the basis of the calculated De
values (Table 8). These results lead to the conclusions:
(1) The ribbon-chain with the larger spin gap is the V3–
V4 ribbon-chain (�J=kB=136K, 92K), and that with
the smaller spin gap is the V1–V2 ribbon-chain
(�J=kB=124K, 103K). (2) The SSE interaction is
stronger than the SE interaction in the larger spin-gap
ribbon-chain, while the opposite is the case in the
smaller spin-gap ribbon chain.

In understanding the relative strengths of the SE and
SSE interactions of VPO, it is necessary to examine how
strongly each ribbon-chain twists from the ideal ribbon
structure by analyzing the O–O–O–O dihedral angles of
the consecutive O4 rings along the ribbon-chains (Table
9) [26]. In the O4 rings associated with the SSE
interactions the V3–V4 ribbon-chains are slightly
twisted while the V1–V2 ribbon chains are strongly
twisted. This makes the SSE interaction much stronger
in the V3–V4 chain than in the V1–V2 chain. The two
basal planes associated with the SE interaction are more
twisted in the V3–V4 chain than in the V1–V2 chain.
Thus the SE interaction is stronger in the V1–V2 chain
than in the V3–V4 chain.
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Fig. 23. (a) Arrangements of the V and O atoms in the ribbon-chains

of VO(HPO4) � 0.5H2O. (b) Perspective view of the ribbon-chains of

VO(HPO4) � 0.5H2O.

Table 9

O–O–O–O dihedral angles of the consecutive O4 rings along the ribbon

chains of the ambient pressure orthorhombic phase of (VO)2P2O7

Chain Dihedral angles (deg)

V3–V4a (�7.7) (�6.8) (–1.1) (7.7) (6.8) (1.1)

V1–V2b (4.7) (�4.8) (27.0) (�4.7) (4.8) (�27.0)

aThe sequence of the O–O–O–O dihedral angles along the V3–V4

ribbon chain is defined as (17–18–10–9), (9–10–16–15), (15–16–18–17),

(17–18–10–9), (9–10–16–15), and (15–16–18–17), where the numbers in

the parentheses refer to the oxygen numbers of Fig. 19, and the

dihedral angles associated with the super-superexchange paths are

indicated by bold letters.
bThe sequence of the O–O–O–O dihedral angles along the V1–V2

ribbon chain is defined as (11–12–8–7), (7–8–14–13), (13–14–12–11),

(11–12–8–7), (7–8–14–13), and (13–14–12–11), where the numbers in

the parentheses refer to the oxygen numbers of Fig. 19.
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7.3.2. Vanadyl hydrogen phosphate VO(HPO4) � 0.5H2O

Vanadyl hydrogen phosphate (VHP), VO(HPO4) �
0.5H2O, is a precursor to VPO. The ribbon-chain of
VHP is depicted in Fig. 23a. Unlike the case of VPO, the
ribbon-chains of VHP are strongly sinusoidal because
the basal plane of each VO5 square pyramid is inclined
to the chain direction by B30� (Fig. 23b) [26]. Another
difference between the ribbon-chains of VHP and VPO
lies in the way the V atoms of each V2O8 dimer are
located with respect to the basal planes; they reside on
one side in VHP (Fig. 23b), but on opposite sides in
VPO (Fig. 20) [26]. There are SE and SSE interactions to
consider in each ribbon chain of VHP, but the magnetic
susceptibility measurements [119] of VHP and the
neutron scattering measurements [120] of its deuterium
analogue, VO(DPO4) � 0.5D2O (hereafter referred to as
VDP), showed that the magnetic structures of VHP and
VDP are described by the isolated dimer model. This
implies that either the SE or the SSE interaction is
strongly reduced. Calculations of the De values show
[26] that the SE interaction should dominate over the
SSE interaction in VHP, because the overlap between
the two magnetic orbitals associated with the SSE
interaction (Fig. 23b) is strongly reduced due to the
large inclination angle. Consequently, both structural
and electronic reasons show that the isolated spin dimers
of VHP are formed by the SE interactions, not by the
SSE interactions [26]. This conclusion disagrees with
that deduced from the powder neutron scattering study
[119]. It is necessary to resolve these irreconcilable by
performing neutron scattering measurements on single
crystal samples of VDP.

7.3.3. Structural features leading to strong super-

superexchange interactions of V4+ and Cu2+ ions

As discussed in the previous section, the strength of
a SSE interaction between V4+ ion sites surrounded
with the main group ligands L depends critically on
the overlap between their magnetic orbitals [26]. The
magnetic orbital of a V4+ (d1) ion is given by the xy

orbital of V, which makes p-antibonding interactions
with the p orbitals of the four ligands L in the basal
plane (Fig. 22a). As depicted in Fig. 22b, the strength of
a SSE interaction between two such magnetic orbitals
increases with increasing the overlap between the p-
orbital tails of the L?L contacts in the two
V2L?L2V paths. This interaction becomes stronger
as the L4 ring formed from the two L?L contact units
is more planar and rectangular, as the basal planes of
the two spin monomers are more coplanar, and as the
L?L contacts are shorter and lie within the van der
Waals distance. When the latter conditions are met, a
SSE interaction can be stronger than a SE interaction as
found for VPO.

A similar situation is also found for spin exchange
interactions involving Cu2+ (d9) ions [27,28]. The
magnetic orbital of a Cu2+ (d9) ion is the x2 � y2

orbital of Cu, which makes sigma antibonding interac-
tions with the p orbitals of the four ligands L (Fig. 24a).
As depicted in Fig. 24b, the strength of a SSE
interaction between two such magnetic orbitals increases
with increasing the overlap between the two p orbital
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Fig. 24. (a) Magnetic orbital of a square planar CuL4 unit containing

a Cu2+ ion. (b) Arrangement of two magnetic orbitals in a SSE

interaction having a linear Cu–L?L–Cu path.
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tails of the L?L contact in one Cu2L?L2Cu path.
This interaction becomes stronger as both +Cu2L?L

bond angles become larger and as the L?L distance
becomes shorter and lies within the van der Waals
distance. The magnetic oxides CuWO4 and CuMoO4-III
have various SE and SSE interaction paths involving
Cu2+ ions [121,122], the strongest spin exchange
interactions of which are the SSE interactions involving
the most linear Cu–O?O–Cu paths [27]. The O?O
distances of these paths are in the range of 2.4 Å, which
is considerably shorter than the van der Waals distance,
and the two +Cu–O?O angles of these paths are
identical and are close to 165�.

For the cases of V4+ and Cu2+ ions described above,
a SSE interaction can be stronger than any SE
interaction. Assigning strongly interacting spin exchange
paths of magnetic solids should be based on appropriate
electronic structure considerations. At least, one should
not neglect SSE interactions that possess the structural
features leading to strong SSE interactions. When a
magnetic solid consists of other magnetic ions with more
than one unpaired spin, it becomes more difficult to
assess the relative strengths of SSE interactions without
appropriate electronic structure calculations. An example
of this case is discussed in the next section.

7.3.4. Strongly interacting spin units of Cu2Te2O5X2

(X=Cl, Br)

The magnetic compounds Cu2Te2O5X2 (X=Cl, Br)
consist of layers of tetrahedral clusters Cu4O8X4 [123].
Each Cu4O8X4 cluster is made up of four ‘‘square
planar’’ CuO3X units, which are joined by oxygen-
corner-sharing such that the four Cu2+ ions form a
tetrahedron and are linked by four SE paths Cu–O–Cu
(Fig. 25a). The Cu4O8X4 clusters form layers parallel to
the ab-plane (Fig. 25b), in which the four Cu–X bonds
of each cluster are pointed towards the neighboring
clusters so that every four adjacent Cu4O8X4 clusters
form a X4 tetrahedron of short X?X contacts. Thus
within a layer of Cu4O8X4 clusters, there occur SSE
interactions between adjacent clusters through the
Cu–X?X–Cu paths. Between adjacent layers of
Cu4O8X4 clusters (Fig. 25c), the clusters interact
through short O?O contacts thus forming SSE
interaction paths Cu–O?O–Cu. The geometrical para-
meters associated with the various SE and SSE paths of
Cu2Te2O5X2 (X=Cl, Br) are summarized in Table 10.
Spin monomers of Cu2Te2O5X2 (X=Cl, Br) are
distorted square planar units (CuO3X)5�. Spin dimers
with a SE path Cu–O–Cu are represented by
(Cu2O5X2)

8�, and those with a SSE path Cu–L?L–
Cu (L=X, O) by (Cu2O6X2)

10�.
The magnetic susceptibility data of Cu2Te2O5X2

(X=Cl, Br) were interpreted by supposing [123–125]
that the strongly interacting spin units of Cu2Te2O5X2

are Cu4O8X4 clusters, and the interactions between
clusters are weak. The topology of the spin exchange
interactions in an isolated Cu4O8X4 cluster is given by a
tetrahedron of four spin sites as depicted in Fig. 26,
where the four exchange paths J1 refer to the four SE
paths Cu–O–Cu, and the two exchange paths J2 to the
two SSE paths Cu–O?O–Cu. The fitting analysis of the
magnetic susceptibility data using this tetrahedron
model show that J1EJ2 for both Cu2Te2O5Cl2 and
Cu2Te2O5Br2. This result is quite surprising, as pointed
out by Johnson et al. [123]. The magnetic orbital of a
CuO3X square planar unit is contained in the plane so
that the two magnetic orbitals associated with a J2 path
should be nearly parallel to each other (Fig. 25a) and
hence their overlap should be practically zero. There-
fore, the J2 path should be very weakly antiferromag-
netic, if not ferromagnetic. In addition, the +Cu–O–Cu
angles of the SE paths Cu–O–Cu are much closer to 90�

than to 180� (Table 10a), so that the antiferromagnetic
interaction J1 cannot be strong according to Good-
enough rules [24].

The Cu–X?X–Cu paths along the (a7b)-direction
are the most linear SSE paths (Table 10b) [28]. In the
most linear Cu–Cl?Cl–Cu path of Cu2Te2O5Cl2, the
Cl?Cl distance (3.667 Å) is close to the van der Waals
distance (i.e., 3.6 Å) while both +Cu–Cl?Cl bond
angles are slightly larger than 160� (i.e., 164.3�). In the
most linear Cu–Br?Br–Cu path of Cu2Te2O5Br2,
the Br?Br distance (3.835 Å) is slightly shorter than
the van der Waals distance (i.e., 3.9 Å) while both +Cu–
Br?Br bond angles are slightly smaller than 160� (i.e.,
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Table 10

Geometrical parameters (lengths in Å and angles in degrees) associated

with the intracluster SE paths and the intercluster SSE paths in

Cu2Te2O5X2 (X ¼ Cl;Br) (a) Intracluster SE paths Cu�O�Cu

Cu–O–Cu X ¼ Cl X ¼ Br

Cu–O 1.971, 1.976 1.964, 2.013

+Cu–O–Cu 109.8 106.9

Cu?Cu 3.230 3.195

(b) Intercluster SSE paths Cu�X?X�Cu

Cu�X?X�Cu X ¼ Cl X ¼ Br

Along the (a7b)-direction

Cu?Cu 8.032 8.439

X?X 3.667 3.835

+Cu–X?X 164.3, 164.3 154.4, 154.4

Along the a- and b-directions

Cu?Cu 6.020 6.289

X?X 3.516 3.588

+Cu�X?X 125.3, 108.1 129.3, 105.5

(c) Intercluster SSE path Cu�O?O�Cu

Cu�O?O�Cu X ¼ Cl X ¼ Br

Cu?Cu 5.015 5.059

O?O 3.011 2.998

+Cu�O?O 83.4, 105.4 85.6, 106.5

Fig. 26. Tetrahedron model based on an isolated Cu4O8X4 cluster of

Cu2Te2O5X2, where the circles represent Cu2+ ions. The unshaded

circles lie above the shaded circles along the c-direction.

Fig. 25. (a) Cu4O8X4 cluster of Cu2Te2O5X2. (b) X?X contacts within a layer of Cu4O8X4 clusters parallel to the ab-plane. (c) O?O contacts

between neighboring layers of Cu4O8X4 clusters.
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154.4�). Consequently, the Cu–X?X–Cu paths along
the (a7b)-direction should provide very strong anti-
ferromagnetic interactions and hence should not be
neglected [28].
The ðDeÞ2 values calculated for the intra- and the
intercluster spin exchange interactions (Fig. 27) of
Cu2Te2O5Cl2 and Cu2Te2O5Br2 are summarized in
Table 11 [28]. The ðDeÞ2 values for the Cu–O?O–Cu
paths between adjacent layers of clusters are not listed
because they are negligibly small. This result is expected
because the +Cu–O?O angles of the SSE paths
Cu–O?O–Cu between adjacent layers of tetrahedral
clusters (Fig. 25c) are also much closer to 90� than to
180� (Table 10c). The intracluster SSE interaction J2 of
Cu2Te2O5X2 (X=Cl, Br) is also negligibly small for the
same reason. The intracluster SE interaction J1 is also
weak as anticipated, because the +Cu–O–Cu angles of
the SE paths Cu–O–Cu are close to 90� (Table 10a).

In Cu2Te2O5X2 (X=Cl, Br) the intercluster SSE
interaction Ja is by far the strongest spin exchange
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Table 11

ðDeÞ2 values in units of (meV)2 calculated for the various SE and SSE

interactions of Cu2Te2O5X2

Interaction Path Cu?Cu (Å) ðDeÞ2 Relative strength

(a) Cu2Te2O5Cl2
SE J1 3.230 576 0.10

J2 3.591 25 0.00

SSE Jb 6.020 484 0.08

Ja 8.032 5746 1.00

(b) Cu2Te2O5Br2
SE J1 3.195 676 0.01

J2 3.543 100 0.00

SSE Jb 6.289 12,410 0.19

Ja 8.439 63,958 1.00

Fig. 27. Spin exchange paths in a layer of Cu4O8X4 clusters in

Cu2Te2O5X2, where the circles represent Cu2+ ions. The unshaded

circles lie above the shaded circles along the c-direction. J1 and J2 are

intracluster spin exchange interactions, and Ja and Jb are intercluster

spin exchange interactions.
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interaction. As expected, this interaction involves the
most linear Cu–X?X–Cu path, which occurs along
the (a7b)-direction in each layer of tetrahedral clusters.
The Cu–X?X–Cu paths along the a- and b-directions
are significantly less linear than those along the (a7b)-
direction (Table 10b), and hence lead to weaker
antiferromagnetic interactions. The ðDeÞ2 values of
Table 11 suggest that the magnetic properties of
Cu2Te2O5Cl2 and Cu2Te2O5Br2 should be slightly
different. The relative magnitudes of the Ja; Jb; J1 and
J2 interactions are given as follows:

Ja4J1XJb4J2 for Cu2Te2O5Cl2;

Ja4JbbJ14J2 for Cu2Te2O5Br2:

Thus, both Cu2Te2O5Cl2 and Cu2Te2O5Br2 are de-
scribed by weakly interacting dimers. The weak inter-
dimer interactions lead to isolated tetrameric units
(defined by Ja and Jb) in Cu2Te2O5Br2, and to a two-
dimensional (2D) lattice (defined by Ja; J1 and Jb) in
Cu2Te2O5Cl2. It is important to note that the intraclus-
ter SE interaction is much stronger in Cu2Te2O5Cl2 than
in Cu2Te2O5Br2. This reflects the fact that the Cu–O–Cu
bridge is much more symmetrical in Cu2Te2O5Cl2 than
in Cu2Te2O5Br2 (Table 10a) [28].

To examine the validity of a weakly interacting dimer
model for Cu2Te2O5X2 (X=Cl, Br) from the viewpoint
of simulating the experimental susceptibility curve wexp
of Cu2Te2O5X2 reported by Johnsson et al. [123] it is
necessary to fit the wexp data with the calculated
susceptibility curve wcalc with a Weiss correction, i.e.,
wexp ¼ wcalc=ð1� ywcalcÞ; where y ¼ 2zJ 0=ðNg2b2Þ [126].
The calculated susceptibility wcalc is written as wcalc ¼
wvv þ wTIP þ C=T ; where wvv is the Van Vleck term that
depends on the spin exchange parameters, wTIP refers to
the temperature-independent paramagnetism, and C=T

is the term for the paramagnetic impurity. For both
Cu2Te2O5Cl2 and Cu2Te2O5Br2, the experimental wexp
data are very well reproduced [127] by using the models
in which the relative strengths of the spin exchange
parameters are determined by the spin dimer analysis
[28]. The key to the success of these simulations is that
the strongest antiferromagnetic spin exchange interac-
tion is given by the intercluster spin exchange Ja:
Although the tetrahedron model based solely on the
intracluster interactions (Fig. 26) provides a good
fitting, the two assumptions employed in this model
(i.e., the neglect of the strong intercluster interaction
Ja and the constraint J1 ¼ J2) are inconsistent with
electronic structure considerations as discussed above.

It is important to note that strongly interacting spin
exchange paths are determined by the overlap between
magnetic orbitals. For a magnetic solid of any interest,
the magnetic orbital(s) are not atomic s-orbitals so that
the overlap between adjacent magnetic orbitals in a
magnetic solid cannot be isotropic. Consequently, the
strongly interacting spin unit of a magnetic solid does
not necessarily have the same geometrical feature as the
arrangement of its magnetic ions [28]. It is critical to
assess the strongly interacting spin exchange paths of
magnetic solids on the basis of appropriate electronic
structure considerations.

7.3.5. Super-superexchange interactions in BaLn2MnS5

(Ln=La, Ce, Pr)

When a magnetic solid consists of other magnetic ions
with more than one unpaired spin, it becomes more
difficult to assess the relative strengths of SSE interac-
tions without appropriate electronic structure calcula-
tions. An example of this case is discussed in this section.

Quaternary manganese sulfides BaLn2MnS5 (Ln=La,
Ce, Pr) have LnS layers alternating with BaMnS4 layers
parallel to the ab-plane (Fig. 28) [128,129]. Each
BaMnS4 layer has the NaCl-type arrangement of Ba2+
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Fig. 28. (a) Arrangement of the Ln and S atoms in the LnS layer of BaLn2MnS5. (b) Arrangement of the Ba2+ ions and tetrahedral (MnS4)
6� anions

in the BaMnS4 layer of BaLn2MnS5. The (MnS4)
6� anions are elongated along the c-direction, so that the +S–Mn–S angles pointed along the c-

direction are 94.8�, 93.8� and 92.6� for Ln=La, Ce and Pr, respectively. (c) Schematic view of the arrangement of the LnS and BaMnS4 layers in

BaLn2MnS5, where the LnS layers were represented by planes and Ba2+ ions of the BaMnS4 layers were omitted for simplicity.
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ions and tetrahedral (MnS4)
6� anions elongated along

the c-direction. The shortest S?S distances between
adjacent tetrahedral (MnS4)

6� anions are slightly longer
than the van der Waals distance (i.e., 3.60 Å) (Fig. 29).
Thus the tetrahedral (MnS4)

6� anions are well separated
from one another, and so are the Mn2+ (d5) ions that
are in the high-spin state (S ¼ 5=2) [129]. Nevertheless,
the Mn2+ ions of BaLn2MnS5 undergo a 3D antiferro-
magnetic ordering at a reasonably high temperature
(i.e., the Néel temperature TN ¼ 58:5; 62.0 and 64.5K
for Ln=La, Ce and Pr, respectively) [129]. Thus the
Mn–S?S–Mn super-superexchange interactions of
BaLn2MnS5 are substantial not only in the ab-plane
but also along the c-direction. There are three adjacent
super-superexchange paths (J1; J2 and J3) to consider in
BaLn2MnS5 [130]. The interlayer spin exchange J2

(between the Mn2+ ions along the c-direction) takes
place through the intervening LnS layer (Fig. 29b). The
powder neutron diffraction study of BaLa2MnS5 at 7K
reveals that the antiferromagnetic transition doubles the
unit cell along each crystallographic direction [130].

The /ðDeÞ2S values calculated for BaLn2MnS5 are
summarized in Table 12 [131]. To compare the relative
strengths of these antiferromagnetic spin exchange
interactions, the relative JAF values were calculated
using the formula JAF ¼ �/ðDeÞ2S=Ueff f with respect to
the largest /ðDeÞ2S value (calculated for BaPr2MnS5)
under the assumption that Ueff is constant. It was found
[131] that the LnS layer is not essential in determining
the strength of the interlayer superexchange interaction
J2: The interlayer spin exchange J2 is stronger than
the intralayer spin exchange J1 (by a factor of B10)
because the path J2 has two short S?S contacts
whereas the path J1 has one and because the S?S
contacts of the path J2 are shorter than that of the path
J1 (Fig. 29). Thus the strongly interacting spin units of
BaLn2MnS5 are 1D chains made up of the exchange
paths J2; and these 1D chains interact weakly via the
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Fig. 29. Spin exchange paths of BaLn2MnS5 (a) within the BaMnS4

plane and (b) along the c-direction. The dotted lines refer to the short

S?S contacts. The S?S distances in (a) are 3.864, 3.869 and 3.905 Å

for Ln=La, Ce and Pr, respectively, and those in (b) are 3.754, 3.737

and 3.671 Å for Ln=La, Ce and Pr, respectively.

Table 12

Values of /ðDeÞ2S in (meV)2 and relative JAF values calculated for

BaLn2MnS5 (Ln¼ La;Ce;Pr)a

Path BaLa2MnS5 BaCe2MnS5 BaPr2MnS5

/ðDeÞ2S Rel. JAF /ðDeÞ2S Rel. JAF /ðDeÞ2S Rel. JAF

J1 216 �0.083 267 �0.102 273 �0.105

J2 2074 �0.794 2278 �0.872 2612 �1.000

J3 44 �0.017 59 �0.023 40 �0.015

aThe relative JAF values were calculated using the expression JAF ¼
�/ðDeÞ2S=Ueff with respect to the largest /ðDeÞ2S value (calculated

for BaPr2MnS5) under the assumption that Ueff is constant.
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exchange paths J1: Since the latter is not negligible
compared with the former, the Néel temperatures TN of
BaLn2MnS5 are reasonably high. Table 12 shows that
the strengths of JAF for the J2 path increase in the order
BaLa2MnS5oBaCe2MnS5oBaPr2MnS5, those for the
J1 path increase in the order BaLa2MnS5o
BaCe2MnS5tBaPr2MnS5. These results are consistent
with the experimental finding that the Néel temperatures
TN increase in the order, BaLa2MnS5oBaCe2MnS5

tBaPr2MnS5. The JAF term for the intralayer spin
exchange J3 is practically zero. This is consistent with
the experimental finding that J3 is ferromagnetic in
BaLa2MnS5 [130].

As shown in Fig. 30, each magnetic orbital of a
(MnS4)

6� anion has S 3p orbitals as a minor component.
Such p-orbital tails of magnetic orbitals play a crucial
role in determining the sign and the magnitude of a spin
exchange interaction [26–28]. The strengths of the Mn–
S?S–Mn SSE interactions in BaLn2MnS5 are deter-
mined by the overlap between the p-orbital tails in
the S?S contacts. The non-bonding S?S contacts
in the vicinity of the van der Waals distance are crucial
for the SSE interactions.

7.4. Effect of orbital ordering and cooperative

Jahn–Teller distortion on spin exchange interaction

7.4.1. Long-range orbital ordering and cooperative

Jahn–Teller distortion

Magnetic solids of transition metal ions possessing
Jahn–Teller instability exhibit a number of interesting
physical phenomena such as charge ordering, orbital
ordering, spin ordering and cooperative Jahn–Teller
(CJTD) distortion [49,58,132–134]. When such a mag-
netic solid undergoes a CJTD, an orbital/spin ordering
follows as a consequence. It is an interesting question
whether or not a CJTD is induced by an orbital ordering
that occurs prior to the distortion [49,58]. The orbital/
spin ordering and CJTD phenomena have been de-
scribed on the basis of phenomenological Hamiltonians
[58,134,135] and first principles electronic band structure
calculations [49,133]. Recently, it was shown [60] that
the CJTD and orbital/spin ordering phenomena of
magnetic solids can be explained in terms of orbital
interactions. In the following we consider cubic pero-
vskite KCuF3 as an example.

In the ideal cubic perovskite AML3 made up of
corner-sharing ML6 octahedra, the M2L2M bridges
are linear (Fig. 31a), and the Anþ cations (n ¼ 123)
occupy the 12-coordinate sites of the 3D ML3 lattice.
Fig. 31b shows a projection view of an ideal tetragonal
ML4 layer made up of corner-sharing ML6 octahedra.
The 3D ML3 lattice is constructed from ML4 layers by
sharing their apical ligand atoms. The relative arrange-
ment of the ML6 octahedra in AML3 is determined
mainly by the tolerance factor t ¼ rA�L=

ffiffiffi
2

p
rM�L defined

by the A2L and M2L distances [132]. The ideal cubic
structure is stable when t ¼ 1: With a small Anþ cation
for which to1; the ideal cubic structure becomes
unstable because the 12-coordinate site is larger in size
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Fig. 30. 1D surface representations of the five magnetic orbitals of a tetrahedral (MnS4)
6� anion: (a, b) eg orbitals. (c–e) t2g orbitals.
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than the Anþ cation. Such a perovskite reduces the size
of the 12-coordinate site by cooperatively tilting the
ML6 octahedra and bending the M2L2M bridges
(Fig. 31c). Another important structural feature of a
cubic perovskite is a distortion in the individual ML6

octahedra, which takes place when each ML6 octahe-
dron has Jahn–Teller instability. For convenience, we
adopt the convention that the 3D ML3 lattice of each
cubic perovskite is constructed from the ML4 layers
parallel to the ab-plane (Fig. 31b) by sharing their apical
ligands along the c-direction. In the distorted structures
of the cubic perovskites KCuF3 [136,137], the +Cu–F–
Cu angle is 180� for all the Cu–F–Cu linkages, and there
is a strong Cu–FyCu bond alternation (i.e., 1.889 and
2.253 Å) within each CuF4 layer while the Cu–F–Cu
bridges remain symmetric along the c-direction (i.e.,
Cu–F=1.962 Å). In KCuF3, the CuF4 layers that have
the CJTDs shown in Fig. 32a and b alternate along the
c-direction [136]. To determine how the distortions of
KCuF3 affect the magnetic orbitals of each CuF6

octahedron, we define the ideal CuF6 regular octahe-
dron by using the average Cu–F bond length from the
corresponding distorted CuF6 octahedron. The eg-block
levels of the ideal and distorted CuF6 octahedra are
depicted in Fig. 33, where the distorted CuF6 octahe-
dron is oriented such that the long and short Cu–F
bonds in the CuF4 layer are pointed along the x and y

axes, respectively. As expected, the distortion strongly
splits the eg levels.
In perovskites every orbital interaction between
adjacent metal sites occurs via the bridging ligand atom
of the associated M2L2M bridge. As illustrated in
Fig. 34 for a linear symmetric M2L2M bridge, such
an orbital interaction can be of s�; p- or d-type
in symmetry. The spin–orbital interaction energy De

is larger for the s-type than for the p-type orbital
interaction, and vanishes for the d-type orbital interac-
tion. Furthermore, the energy De becomes smaller as
the bridging ligand atom moves away from the center
of the bridge toward one metal atom (to form an
asymmetric M2LyM bridge). It is also reduced when
the M2L2M bond angle decreases from 180�.

When each CuF6 octahedron is regular in shape, the
eg-block levels ‘‘x2 � y2’’ and ‘‘3z2 � r2’’ are degenerate
and accommodate three electrons so that the electronic
state of each CuF6 octahedron is described by the
configurations ð3z2 � r2Þ1ðx2 � y2Þ2 and ð3z2 � r2Þ2
ðx2 � y2Þ1: If each CuF6 octahedron adopts the
ð3z2 � r2Þ1ðx2 � y2Þ2 configuration, the destabilizing
interaction between doubly filled levels is strong in the
ab-plane while that between singly filled levels is strong
along the c-direction. If each CuF6 octahedron adopts
the ð3z2 � r2Þ2ðx2 � y2Þ1 configuration, the opposite is
the case. Fig. 35a and b show two examples of orbital
ordering that minimize these destabilizing interactions
within each CuF4 layer parallel to the ab-plane. Between
every adjacent Cu2+ sites, the doubly filled levels have
orthogonal arrangements in each CuF4 layer and make
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Fig. 31. (a) Perspective view of a simple cubic perovskite AML3. (b)

Projection view of an ideal tetragonal ML4 layer parallel to the ab-

plane. (c) Schematic polyhedral view of a cubic perovskite AML3 for

which to1:

Fig. 32. CJTDs in the two adjacent CuF4 layers of KCuF3. The

directions of the Cu–F bond shortening and elongations are opposite

in (a) and (b).

Fig. 33. (a) Cu–F bond lengths of a distorted CuF6 octahedron in

KCuF3. (b) eg levels of the ideal (left) and distorted (right) CuF6

octahedra. The energy separation is in meV.
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a poor overlap along the c-direction. Thus the four-
electron two-orbital destabilizing interaction is mini-
mized in all three directions. The magnetic orbitals (i.e.,
the singly filled orbitals) have orthogonal arrangements
in each CuF4 layer but leads to a s-type interaction
between adjacent Cu2+ sites along the c-direction. Thus
the two-electron two-orbital destabilizing interaction
is minimized only in the ab-plane. When this orbital
ordered state undergoes a CJTD, each Cu2+ site lowers
the doubly filled level while raising the singly filled level
(Figs. 33 and 36) thereby lowering the total energy.

The orbital ordering and CJTD in KCuF3 have an
immediate consequence on the spin ordering of KCuF3.
As mentioned above, the magnetic orbitals of KCuF3

make a poor overlap in the ab-plane but make a good
overlap along the c-direction. Therefore, the JAF term
should be negligible in the ab-plane but substantial
along the c-direction. This explains why KCuF3 adopts
the A-type magnetic structure, i.e., ferromagnetic in the
ab-plane but antiferromagnetic along the c-direction
[137].

7.4.2. Short-range orbital ordering and spin exchange

interactions of BaVS3

In BaVS3 the VS3 chains made up of face-sharing VS6

octahedra are separated by Ba2+ ions, which occupy the
12-coordination sites between three adjacent VS3 [138].
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Fig. 35. Two examples of orbital ordering that minimize the orbital

interactions between adjacent spin sites in an ideal undistorted CuF4

layer has symmetric Cu–F–Cu bridges. In both (a) and (b) the

arrangement of the doubly filled orbitals is shown on the left, and that

of the singly filled orbitals on the right.

Fig. 34. Representative examples of (a) s-type, (b) p-type and (c) d-
type orbital interactions through a symmetric M2L2M bridge of a

cubic perovskite AML3.

Fig. 36. Orbital ordering that minimizes the orbital interactions

between adjacent spin sites in each distorted CuF4 layer that has

unsymmetrical Cu–F?Cu bridges.

Fig. 37. Description of the crystal structure of BaVS3: (a) Perspective

view of a VS3 octahedral chain made up of face-sharing VS6 octahedra

in polyhedral representation. (b) Projection view of a VS3 chain along

the chain direction, where the dot represents the position of the V

atom. (c) Projection view, along the c-direction, of the arrangements of

the VS3 chains, the V4+ ions (dots) and the Ba2+ ions (open circles) in

the hexagonal structure of BaVS3 at room temperature.
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Upon lowering the temperature BaVS3 undergoes three
phase transitions; a structural transition at TSE240K, a
metal-insulation (MI) transition at TMIE70K, and
a magnetic transition at TXE30K [139]. At room
temperature BaVS3 has the hexagonal perovskite-type
structure, and the V4+ (d1) ions in each VS3 chain form
a straight chain (Fig. 37). A powder neutron diffraction
study reported that below TS the V4+ (d1) ions of each
VS3 chain form a zigzag chain in a bc-plane with the
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Fig. 38. Projection view, along the c-direction, of the arrangements of

the VS3 chains, the V4+ ions (dots) and the Ba2+ ions (open circles) in

the orthorhombic structure of BaVS3 below B240K. The zigzagging

of the vanadium atoms occurs in a bc-plane.

Fig. 39. (a) Local Cartesian coordinate of a VS6 octahedron, in which

the z-axis is taken along the three-fold axis of the octahedron. (b–d)

d-orbitals contributing to the ‘‘symmetry-adapted’’ t2g-orbitals of a

VS6 octahedron. These d-orbitals are 3z22r2 in (b),
ffiffiffiffiffiffiffiffi
2=3

p
xy �ffiffiffiffiffiffiffiffi

1=3
p

yz in (c), and �
ffiffiffiffiffiffiffiffi
2=3

p
ðx2 � y2Þ �

ffiffiffiffiffiffiffiffi
1=3

p
xz in (d).
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+V–V–V angle of B160� (Fig. 38) [140]. Despite this
1D nature of the structure, the electrical resistivity of
BaVS3 is not highly anisotropic but is rather three
dimensional [139]. The electrical resistivity of BaVS3 is
nearly independent of temperature above TMI and
increases sharply below TMI [139,141]. However, a
recent X-ray diffraction study [142] of single crystal
BaVS3 samples found that there occur superlattice
reflections with propagation vector 0:5c� below TMI:
Thus, the MI transition involves a spatial order of the
lattice and doubles the c-axis length. This work showed
that the correct space group for the structure of BaVS3

below TMI is not Cmc21 [140], but is likely to be Im2m

in which two non-equivalent V atoms (say, VA and VB)
repeat as 2VA2VA2VB2VB2VA2VA2VB2VB2 in
each VS3 chain. Subsequently, it was observed [143]
that the MI transition of BaVS3 is accompanied by huge
1D structural fluctuations (observable up to 170K)
reminiscent of a pseudo 1D metal.

The magnetic susceptibility of BaVS3 follows a Curie–
Weiss behavior above TMI with the reported meff values
ranging 1.17–1.33 mB [144], which amounts to 0.54–0.66
unpaired spin per V. The magnetic susceptibility
decreases rapidly below TMI [139,141,144], but 51V
NMR and NQR measurements indicate that BaVS3

has a non-magnetic ground state and a spin gap [145].
The latter is explained in terms of an orbital ordering in
a spin-singlet state [86,139]. An incommensurate anti-
ferromagnetic spin structure sets in below TX with the
ordered magnetic moment of B0.5 mB and the propaga-
tion vector qspin ¼ ð0:226a�; 0:226b�; 0Þ in the hexagonal
setting [146]. Thus the V4+ (d1) sites of BaVS3 are
grouped into magnetic and non-magnetic sites in
approximately 1:1 ratio [142], and the c-axis length of
the ordered spin structure is apparently the same as
that of the room temperature crystal structure (i.e., the
c� component of qspin is zero).

The properties of BaVS3 present a number of puzzling
features. The observed electrical resistivity does not
exhibit 1D metallic character [139] despite that it
consists of 1D chains. Nevertheless, BaVS3 exhibits
strong 1D structural fluctuations as if it is a 1D metal.
The MI transition doubles the c-axis length in terms of
the crystal structure, but the ordered spin structure
below TX appears to have the same c-axis length as does
the room temperature crystal structure. With an array of
V4+ (d1) ions in each VS3 chain, one might expected a
Peierls distortion leading to a V–V?V–V? bond
alternation, but this does not happen. The 1D structural
fluctuations and the superlattice spots of BaVS3 are
characterized by the propagation vector q ¼ 0:5c�

[142,143]. For these 1D structural fluctuations to
originate from a charge density wave instability, BaVS3

should have a half filled band dispersive mainly along
the chain direction (i.e., the c-direction) and the
associated Fermi surface should be well nested [147].
These expectations are not supported by the results of
the first principles electronic band structure calculations
for the normal metallic state of the room temperature
structure of BaVS3 [86,148].

The magnetic properties of BaVS3 show that there is
0.54–0.66 spin/V above TMI; and about 0.5 spin/V below
TX : For the discussion of the electronic structure of
BaVS3 above TMI; therefore, it is more appropriate to
begin from the viewpoint of an electron-localized state
in which each V4+ site has one localized spin. In
discussing the local electronic structure of each V4+ site,
it is important to note that there are two representations
of the t2g-orbitals. For the local coordinate system of a
VS6 octahedron in Fig. 39a, the symmetry-adapted
t2g-orbitals are given as shown in Fig. 39b–d [86].



ARTICLE IN PRESS

Fig. 40. (a) Alternative choice of the local Cartesian coordinate for a

VS6 octahedron. (b–d) d-orbitals contributing to the ‘‘symmetry-

broken’’ t2g-block levels of a VS6 octahedron. These d-orbitals are

described by xy in (b), yz in (c), and xz in (d).

Fig. 41. (a) Arrangement of the ‘‘equatorial’’ planes containing the

‘‘symmetry-broken’’ t2g-orbitals along the (a þ b)-direction, and (b)

that along the a-direction, in the orthorhombic structure of BaVS3.

For simplicity, the ‘‘symmetry-broken’’ t2g-orbitals contained in the

‘‘equatorial’’ planes are not shown. The (a þ b)- and (�a þ b)-

directions are equivalent by symmetry. (c) Overlap between the S 3p

orbital tails of the magnetic orbitals contained in the ‘‘equatorial’’

planes of (a) and (b). The overlap leads to super-superexchange

(V-S?S–V) interactions.

Table 13

/ðDeÞ2S valuesa of the interchain spin exchange interactions

calculated for the room temperature and 110, 60 and 5K crystal

structures of BaVS3

Along (a þ b) Along a

Room temperature 2400 2400

110K 5200 3500

60K 6800 2100

5K 5800 1900

aIn units of (meV)2.
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One of these orbitals is the V 3z2 � r2 orbital (Fig. 39b),
which leads to stronger interactions between adjacent
V4+ ions primarily along the chain direction than along
the interchain directions. When the local coordinate
system of a VS6 octahedron is chosen as in Fig. 40a, we
obtain the ‘‘symmetry-broken’’ t2g-orbitals presented in
Fig. 40b–d [86]. The latter have been found useful in
describing electronic instabilities such as charge density
wave in low-dimensional oxide and chalcogenide metals
of transition metal elements [78,147,149].

In the orthorhombic structures of BaVS3, nearest-
neighbor ‘‘interchain’’ interactions involving the
‘‘symmetry-broken’’ t2g-orbitals can occur along the
(a þ b)-direction (Fig. 41b), the a-direction (Fig. 41b),
and the (�a þ b)-direction. (The latter is not shown
because it is equivalent to that along the (a þ b)-
direction. For simplicity, only the ‘‘equatorial’’ planes
containing the ‘‘symmetry-broken’’ t2g-orbitals are
shown in Fig. 41a and b.) Each V4+ ion has one
unpaired spin, which can occupy any one of the three
t2g-orbitals. Thus, it is possible that the two t2g-orbitals
of Fig. 41a are each singly occupied. Then, as depicted
in Fig. 41c, they give rise to an SSE interaction through
the V–S?S–V paths, for which the overlap between the
S 3p orbital tails is important. For the V4+ (d1) ion of
each spin monomer (VS6)

8�, the t2g-block levels are
singly filled. Suppose that the symmetry-broken t2g-
orbitals of (VS6)

8� are identified as x1; x2 and x3: Then,
according to our discussion of Section 5.4, the strengths
of the interchain interactions are estimated in terms of
the /ðDeÞ2S values

/ðDeÞ2SE
1

9
½ðDe11Þ2 þ ðDe22Þ2 þ ðDe33Þ2	 ð7:1Þ

which are calculated by using the spin dimers [(VS6)
8�]2.

The /ðDeÞ2S values calculated for the (a þ b)- and
a-directions are summarized in Table 13. It is clear that
below 70K, the antiferromagnetic interaction along the
(a þ b)- and (�a þ b)-directions are stronger than that
along the a-direction by a factor of three. The interchain
SSE interaction of any given V4+ site may take place
along the (a þ b)-, (�a þ b)- or a-direction. If such
interactions occur randomly in each plane of VS6

octahedra parallel to the ab-plane (e.g., see Fig. 42),
then there will be no long range magnetic ordering
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Fig. 42. Random arrangement of antiferromagnetically coupled

interchain spin dimers (represented by solid lines) within a layer of

VS6 octahedra parallel to the ab-plane, where the repeat vectors a

and b refer to the hexagonal setting. The dots represent the V4+ ion

positions.

Fig. 43. Two broken-symmetry electronic states of a VS3 chain, where

the V atoms are represented by shaded circles.

M.-H. Whangbo et al. / Journal of Solid State Chemistry 176 (2003) 417–481458
although spins are all paired up via nearest-neighbor
interchain spin exchange interactions [86,139,145]. Such
a state describes the magnetic structure of BaVS3

between TMI and TX :
If the correct space group of BaVS3 is Im2m below

TMI; as deduced by Inami et al., [142] two non-
equivalent V atoms repeat as (2VA2VA2VB2VB2)N
in each VS3 chain so that the c-axis doubling comes
about naturally. To explain the structural and magnetic
properties of BaVS3 under the constraint that the V4+

(d1) ions are separated into magnetic and non-magnetic
sites in approximately 1:1 ratio, two symmetry-broken
electronic structures have been proposed [142,143].
Inami et al. [142] considered the possibility state in
which two electrons in one pair of vanadium (e.g.,
VA2VA) form a singlet ground state, and those in
the other pair (e.g., VB2VB) are localized (Model 1)
(Fig. 43). As Fagot et al. suggested [143], it is reasonable
to suppose that the VA sites utilize the 3z2 � r2 orbitals
(symmetry-adapted). These orbitals will produce a
s-bonding level and accommodate two electrons form-
ing a singlet ground state so that each VA2VA pair
becomes non-magnetic. For the VB sites to be magnetic,
symmetry-broken t2g orbitals are more effective than
the symmetry-adapted t2g orbitals because the former
diminishes orbital overlap between adjacent V sites [86].
The spin structure of Model 1 doubles the c-axis
length, in apparent disagreement with the ordered spin
structure deduced from powder neutron diffraction
[146]. Fagot et al. [143] considered an alternative
possibility that every second V atom along each chain
has one electron in the 3z2 � r2 orbital, and each of
the remaining V atoms has a localized spin (Model 2)
(Fig. 43b). This model does not double the c-axis as far
as the spin structure is concerned, but is incompatible
with the space group Im2m; because it generates four
non-equivalent V atoms (i.e., two different VA and two
different VB atoms).

It should be recalled that the ferromagnetic ordering
along the c-direction (i.e., the c� component of qspin is
zero) was not deduced experimentally, but was rather
assumed in order to determine the propagation vector in
the ab-plane from the powder neutron diffraction data
[146]. Therefore, it is critical to know if Model 1 is
consistent with the vector qspin thus determined. For this
purpose, we first consider the possible nature of spin
ordering in the ab-plane. A 1D arrangement of VS3

chains appropriate for Model 1 is one in which two
consecutive sheets of VAS6 octahedra (parallel to the
ab-plane) alternate with two consecutive sheets of VBS6

octahedra along the c-direction. In BaVS3 each Ba atom
is located at the center of a V6 trigonal prism. The above
1D arrangement of VS3 chains generates four BaV6

trigonal prisms for every VA2VA2VB2VB unit, i.e., one
Ba(VA)6, one Ba(VB)6 and two Ba(VA)3(VB)3. This is
consistent with the expected Ba positions from the space
group Im2m [142]. Suppose that each VA2VA pair along
the chain direction forms a s-bonding level, and the
unpaired spins in each sheet of VBS6 octahedra order
through super-superexchange interactions in the ab-
plane [86]. The decrease of the magnetic susceptibility
below TMI and the lack of long range spin order
between TMI and TX are explained in terms of random
arrangements of antiferromagnetically coupled inter-
chain spin dimers (VBS6)2 within the sheets of VBS6

octahedra (Fig. 42) [86,139]. In this picture, the
occurrence of an ordered incommensurate spin structure
in each sheet of VBS6 octahedra should be a conse-
quence of ordering such spin dimers. Fig. 44 shows an
example of a

ffiffiffiffiffi
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p
superstructure with repeat

vectors a0 ¼ 5aþ b and b0 ¼ 4b� a (here a and b are the
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Fig. 44.
ffiffiffiffiffi
21

p


ffiffiffiffiffi
21

p
superstructure of spin dimer ordering, where the

repeat vectors a and b refer to the hexagonal setting. The dots

represent the V4+ ion positions.
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repeat vectors of the hexagonal room temperature
structure) [150]. The propagation vector of this super-
structure in reciprocal space is (0:218a�; 0:218b�), which
is close to that of the reported incommensurate
structure, i.e., (0:226a�; 0:226b�) [146].

The 1D spin structure of BaVS3 below TX can be
described in terms of ordering, along the c-direction, theffiffiffiffiffi
21

p


ffiffiffiffiffi
21

p
superstructures formed in the sheets of VBS6

octahedra. Spin exchange interactions along the c-
direction are possible between adjacent sheets of VBS6

octahedra joined by face sharing, but not between those
separated by sheets of VAS6 octahedra. Along the
c-direction, therefore, the

ffiffiffiffiffi
21

p


ffiffiffiffiffi
21

p
superstructures

formed in the sheets of VBS6 octahedra would propagate
without any repeat pattern. Powder neutron diffraction
patterns for such a random ordering would be well
described by the assumption that the c� component of
the propagation vector is zero. Thus, Model 1 is
consistent with the vector qspin ¼ ð0:226a�; 0:226b�; 0) if
the spin ordering along the c-direction is random [150].

Since the properties of BaVS3 are explained in terms
of the broken-symmetry electronic state, Model 1, it is
important to ask why such a state can become the
ground state to begin with. For our discussion, it is
necessary to consider two opposing energy factors, i.e.,
lattice strain and cooperative Jahn–Teller distortion
[150]. BaVS3 has a close packed hexagonal arrangement
of VS3 chains, and each Ba2+ ion is located in a pocket
of 12 S atoms in the channels created by three adjacent
chains. In addition, the nearest-neighbor V–V distance
of the VS3 chain is very short (i.e., 2.805 Å) due to the
face sharing. In this compact structure, a V–V?V–V?
bond alternation along the chain is energetically
unfavorable because it forces a change in the V–S bond
lengths and a shortening of the Ba–S contact distances
and hence leads to severe lattice strain. Model 1 requires
every fourth V–V pair of each chain to form a V–V
s-bonding level and induces less severe lattice strain
than does the V–V?V–V? bond alternation. The V4+

(d1) ion of each VS6 octahedron has Jahn–Teller
instability. The crystal structures of BaVS3 determined
below TS [140] (Fig. 38) suggest that the preferred
distortion for lifting the t2g level degeneracy is one in
which the V atom of each VS6 octahedron moves toward
one S3 triangle face. Then, at a given VS6 octahedron of
a VS3 chain, the V atom can move toward a shared face
along the chain or toward triangular faces in the
direction perpendicular to the chain. In each VA2VA

pair, it is energetically favorable for the VA atoms to
move toward each other along the chain and form a s-
bonding level. In order to avoid strong lattice strain, the
VB atoms in each VB2VB pair cannot follow the same
distortion pattern. Then the VB atoms should move
either away from each other along the chain or in the
direction perpendicular to the chain. Thus, in a VB2VB

pair, shortening of the VB2VB distance and formation
of a s-bonding are prevented so that the VB atoms
remain magnetic.

The symmetry-broken state, Model 1, should arise as
a consequence of balancing two opposing energy terms,
i.e., stabilization from cooperative Jahn–Teller distor-
tions and destabilization from the associated lattice
strain. In terms of Model 1, the 1D structural fluctua-
tions in BaVS3 mean that regions of short-range
cooperative Jahn–Teller distortions are formed and
destroyed dynamically in individual VS3 chains. The
1D structural fluctuations in each VS3 chain will reduce
the mean free path, and lower the mobility, of electrons
mainly along the chain direction. Thus strong 1D
metallic conductivity is absent in BaVS3.

7.5. Anisotropy in the spin exchange interactions of

AV3O7 (M=Cd, Ca, Sr)

AV3O7 (A ¼ Cd;Ca; Sr) consists of V3O7 layers
(Fig. 45a) that are made up of edge-sharing VO5 square
pyramids possessing V4+ (d1) ions [151,152]. The A2þ

ions occupy the sites of the V3O7 layers where V4+ ions
are missing. Each V3O7 layer has two kinds of vanadium
atoms and two kinds of oxygen atoms (Fig. 45b). As
a function of temperature the magnetic susceptibilities
of AV3O7 exhibit a broad maximum (Fig. 46) hence
indicating the occurrence of an antiferromagnetic
ordering [151]. If these susceptibility curves are fitted
with a Heisenberg linear antiferromagnetic chain model,
one obtains the values of Tmax at which the magnetic
susceptibility curves show a maximum. Then, using the
relationship [34]

�J=kB ¼ 1:560 Tmax ð7:2Þ

the value of the spin exchange parameter J for the
Heisenberg linear antiferromagnetic chain can be
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estimated. The Tmax and J values thus determined for
AV3O7, along with the ionic radii of the A2þ ions, are
listed in Table 14 [151]. According to this analysis the
Fig. 46. Magnetic susceptibility of AV3O7 (M ¼ Cd;Ca; Sr) as a fun

Fig. 45. (a) Schematic projection view of the V3O7 layer of AV3O7

(M=Cd, Ca, Sr). In each square with solid (dashed) diagonal lines, the

apical oxygen of a VO5 square pyramid lies above (below) the basal

plane. (b) Definition of the V(1), V(2), O(1) and O(2) atoms in the

V3O7 layer.
magnitude of J increases in the order, CdV3O7o
CaV3O7oSrV3O7, thereby suggesting that the extent
of 1D character increases in the same order. This
suggestion is a direct consequence of the 1D model used
to analyze the experimental data, and is erroneous as
discussed below.

The spin exchange interactions of CaV3O7 were
examined by DFT calculations using the LDA+U
potential [50]. In our earlier spin dimer analysis [154] of
AV3O7 (A ¼ Cd;Ca; Sr), the crystal structures of Liu
and Greedan [151] were used, and the oxygen 2p orbital
parameters employed for EHTB calculations were not
calibrated (Section 6.3). Recently, Nishiguchi et al. [152]
reported more accurate crystal structures of CdV3O7

and CaV3O7 as well as a new crystal structure of
Ca0.55Sr0.45V3O7. Results of spin dimer analysis depend
critically on the accuracy of the structural data used [26]
and on the diffuseness of the oxygen 2p orbitals (Section
6.3) [26,82]. Therefore, we reexamine the spin exchange
interactions of AV3O7 using these structural data using
the calibrated oxygen 2p orbital. There are four
able 14

and Tmax values of AV3O7 and ionic radius r of A2+a

CdV3O7 CaV3O7 SrV3O7

(A2+) (Å) 1.17 1.20 1.35

max (K) 35 80 110

J=kB (K) 37.0 76.6 95.5
T

J

r

T

�

ction of temperature. (a) A ¼ Cd; (b) A ¼ Ca; and (c) A ¼ Sr:

aTaken from Ref. [151].
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exchange paths of AV3O7 to consider as specified in
Table 15. In Fig. 47 the solid lines refer to corner-
sharing SE interactions, and the dotted lines to edge-
sharing SE interactions. From the relative (De)2 values
of Table 15, the following are observed: (1) The strongly
interacting spin units are given by the zigzag chains
defined by J1 and J2; these chains are practically the
same for all three compounds, and J1 and J2 are about
the same. (2) J4 is weakest and is practically the same
in the three compounds. (3) J3 increases in the order,
CdV3O7oCaV3O7oCa0.55Sr0.45V3O7.

The above observations show that the interactions
within the strongly interacting spin units are essentially
identical in three compounds, while those between the
strongly interacting spin units increase in the order
CdV3O7oCaV3O7oSrV3O7. (Here we assume that the
trend observed between CaV3O7 and Ca0.55Sr0.45V3O7

will be extended linearly to SrV3O7.) Consequently, the
observed increase in Tmax in the order CdV3O7o
CaV3O7oSrV3O7 should be related to the fact that the
strength of the interchain interaction increases in
the same order. In other words, the 2D character of
the magnetic lattice is strongest in SrV3O7, and weakest
in CdV3O7. In order to estimate the spin exchange
Table 15

Relative values of ðDeÞ2 in AV3O7
a

V–O–V bridge Cd Ca Ca0.55Sr0.45

J1 Corner-sharing 1.00a 0.97 0.97

V(1)–O(2)–V(2)

J2 Corner-sharing 0.90 0.89 0.97

V(1)–O(1)–V(2)

J3 Edge-sharing 0.43 0.55 0.70

V(1)–O(1)–V(1)

V(1)–O(2)–V(1)

J4 Edge-sharing 0.32 0.27 0.27

V(1)–O(1)–V(2)

V(1)–O(2)–V(2)

a ðDeÞ2 ¼ 17; 500 (meV)2 was taken as the reference.

Fig. 47. Four spin exchange paths of the V3O7 layer in AV3O7. The

solid lines refer to corner-sharing SE interactions, and the dotted line

edge-sharing SE interactions.
parameters of these compounds, Nishiguchi et al. [156]
fitted the magnetic susceptibility data in terms of high-
temperature series expansion assuming that J1 ¼ J2:
Their analysis shows that J1 and J2 are strongly
antiferromagnetic in CdV3O7, CaV3O7 and SrV3O7,
that J4 is ferromagnetic in the three compounds, and
that J3 is ferromagnetic in CdV3O7, is antiferromagnetic
in CaV3O7, and becomes more strongly antiferromag-
netic in SrV3O7. In the case of SrV3O7 the maximum
strength of J3 can be as high as the minimum strength of
J1 and J2 within the error bounds given [152]. These
results are entirely consistent with the relative strengths
of the four spin exchange paths summarized in Table 15.

It is of interest to examine why the J1 and J2 values
are nearly the same in CdV3O7, CaV3O7 and
Ca0.55Sr0.45V3O7 and why the three compounds are
distinguished in the J3 values. The geometrical para-
meters of the V–O–V linkages associated with the
exchange paths J1 and J2 are summarized Table 16.
The average V–O lengths increase in the order
CdV3O7oCaV3O7oCa0.55Sr0.45V3O7, which should
weaken [66] the spin exchange interaction in the same
order. However, the average +V–O–V angles increase
in the same order, which should strengthen [24] the spin
exchange interaction in the same order. Due to the
canceling of the two opposing effects, the J1 and J2

values are nearly the same in the three compounds. The
geometrical parameters of the V–O–V linkages asso-
ciated with the exchange path J3 are summarized
Table 17. It is noted that the +V–O–V angles are
nearly the same in three compounds, and so are the
average V–O lengths. However, the extent of the
Table 16

Geometrical parameters of the V–O–V linkages associated with the

exchange paths J1 and J2

J1 J2

CdV3O7 V–O (Å) 1.953, 1.964 1.954, 1.978

+V–O–V (deg) 127.9 131.2

CaV3O7 V–O (Å) 1.964, 1.962 1.961, 1.978

+V–O–V (deg) 128.3 132.3

Ca0.55Sr0.45V3O7 V-O (Å) 1.964, 1.973 1.960, 1.976

+V–O–V (deg) 131.2 133.6

able 17

eometrical parameters of the V–O–V linkages associated with the

xchange paths J3

V(1)–O(1)–V(1) V(1)–O(2)–V(1)

dV3O7 V–O (Å) 1.953, 1.975 1.954, 1.966

+V–O–V (deg) 99.2 99.4

aV3O7 V–O (Å) 1.964, 1.972 1.960, 1.961

+V–O–V (deg) 98.5 99.0

a0.55Sr0.45V3O7 V–O (Å) 1.964, 1.968 1.960, 1.966

+V–O–V (deg) 98.1 98.3
T

G

e

C

C

C
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asymmetry in the V–O lengths of the V(1)–O(1)–V(1)
linkage increases in the CdV3O7oCaV3O7oCa0.55Sr0.45
V3O7. This explains why the strength of J3 increases in
the same order.

7.6. Trends in the magnetic susceptibilities of AV4O9

(A=Ca, Cs2, DPP)

The vanadium oxides AV4O9 (A ¼ Ca;Cs2;DPP)
consists of V4O9 layers that are made up of VO5 square
pyramids containing V4+ (d1) ions [153,155–157], where
DPP represents diprotonated piperazine NH2

(CH2CH2)2NH2. For different cations A2+, the V4O9

layers differ in the way the VO5 square pyramids are
condensed as shown in Fig. 48, where each small square
with solid (dotted) diagonal lines represents a VO5

square pyramid having the apical oxygen atom above
(below) the basal plane, and each large square consisting
of four small squares represents a plaquette. The
magnetic susceptibilities of (DPP)V4O9, CaV4O9 and
Cs2V4O9 show a broad maximum at TmaxE30; 100 and
600, as depicted in Fig. 49 [153,156,157]. The suscept-
ibility plots exhibit several striking features. (1) The
Tmax value shows a wide variation and increases in the
order (DPP)V4O9oCaV4O9oCs2V4O9. (2) The suscept-
ibility at Tmax (i.e., wmax) increases in the opposite order,
i.e., (DPP)V4O94CaV4O94Cs2V4O9. (3) The room
Fig. 48. Condensation patterns of the V4O9 layers of (a) (DPP)V4O9,

(b) CaV4O9, and (c) Cs2V4O9. Each small square with solid (dotted)

diagonal lines represents a VO5 square pyramid having the apical

oxygen atom above (below) the basal plane, and the large square made

up of four small squares represents a plaquette.
temperature susceptibility of (DPP)V4O9 is nearly twice
as high as the wmax of CaV4O9. In the following
we examine these trends by considering the spin
exchange interactions of these compounds.

The spin exchange parameters of CaV4O9 are known
for four exchange paths from the neutron inelastic
scattering and magnetic susceptibility studies [158,159]
and from first principles electronic structure calculations
(Table 18) [50,159]. From the calculated ðDeÞ2 for these
exchange paths, we estimate the exchange parameters
using the relationship �ðDeÞ2=Ueff ; where the Ueff value
of 1.587 eV is chosen to reproduce the strongest J value
[162]. Clearly, the relative strengths of the four experi-
mental J values are well reproduced by the �ðDeÞ2=Ueff

values (Table 18). Calculations of the De values for
AV4O9 (A ¼ DPP;Ca;Cs2) show [162] that the strongest
spin exchange interactions form zigzag linear tetramers
in (DPP)V4O9 (Fig. 50a), squares in CaV4O9 (Fig. 50b),
and dimers in Cs2V4O9 (Fig. 50c). To a first approxima-
tion, the magnetic excitation energies of AV4O9 are
largely determined by the energy gap between the
ground and the first excited states of their strongly
interacting spin units. To estimate the relative magni-
tudes of these excitation energies, we set up spin
Hamiltonians for the strongly interacting spin units
using the spin exchange parameters appropriate for the
dimer, square and zigzag linear tetramer units shown
in Fig. 51.

Dimer : Ĥ1 ¼ �J4Ŝ1 � Ŝ2;

Square : Ĥ2 ¼ �J3ðŜ1 � Ŝ2 þ Ŝ2 � Ŝ3 þ Ŝ3 � Ŝ4 þ Ŝ4 � Ŝ1Þ;
Zigzag linear tetramer :

Ĥ3 ¼ �J2Ŝ2 � Ŝ3 � J1ðŜ1 � Ŝ2 þ Ŝ3 � Ŝ4Þ:

The relative energies of the ground and excited states of
the Hamiltonians Ĥ1 and Ĥ2 are depicted in Fig. 52. The
spin states of the Hamiltonian Ĥ3 have the following
energies

E6 ¼ �J1

2
� J2

4
;

E5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
1 þ J2

2

q
2

þ J2

4
;

E4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2

1 � 2J1J2 þ J2
2

q
2

þ J1

2
þ J2

4
;

E3 ¼
J1

2
� J2

4
;

E2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
1 þ J2

2

q
2

þ J2

4
;

E1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2

1 � 2J1J2 þ J2
2

q
2

þ J1

2
þ J2

4
;
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Fig. 49. Magnetic susceptibilities of (a) (DPP)V4O9, (b) CaV4O9 and (c) Cs2V4O9 as a function of temperature.

Table 18

Experimental and calculated spin exchange parameters of CaV4O9 (in

meV) for the corner- and edge-sharing exchange paths

Intraplaquette Interplaquette

Edge Corner Edge Corner

(a) Experiment

Neutron scatteringa �5.76 �1.25 �5.76 �14.73

Magnetic susceptibilityb �9.3 �3.7 �9.6 �14.2

(b) Electronic structure calculations

LDA+Uc �7.67 �7.84 �5.34 �12.75

LSDAb �8.9 �6.5 �1.1 �23.8

SCADb �9.7 �3.9 �12.5 �19.3

�ðDeÞ2=Ueff
d �6.36 �4.18 �5.54 �14.73

aTaniguchi et al. [158].
bHellberg et al. [159].
cKorotin et al. [50].
dUeff ¼ 1:587 eV.

Fig. 50. Simplified representation of spin exchange interactions in (a)

(DPP)V4O9, (b) CaV4O9, and (c) Cs2V4O9. The solid lines indicate the

strongly interacting spin units, and the dotted lines represent the

weaker interactions between the strongly interacting spin units.
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where E1 is the ground state if J1 and J2 are both
antiferromagnetic. Fig. 53 plots how the energies of the
four lowest-lying spin states (i.e., E1;E2;E3;E4) vary as
a function of the ratio J2=J1 in the range of 1–3. The
relative strengths of the parameters J1; J2; J3 and J4 can
be determined by using the corresponding ðDeÞ2 values
calculated from spin dimer analysis. Use of the
uncalibrated O 2p orbital leads to J2E4:0J1;
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Fig. 51. Spin exchange parameters of the strongly interacting spin

units of AV4O9: (a) the dimer unit of Cs2V4O9, (b) the square unit of

CaV4O9 and the zigzag linear tetramer unit of (DPP)V4O9.

Fig. 52. Energies of the spin states for (a) the dimer unit of Cs2V4O9 in

terms of J4 and (b) the square unit of CaV4O9 in terms of J3:

Fig. 53. Energies of the lowest-four spin states of the zigzag linear

tetramer unit of (DPP)V4O9 in terms of J1 as a function of the ratio

J2=J1 in the range of 1–3 (both J1 and J2 are assumed to be

antiferromagnetic).
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J3E0:75J1; and J4E2:1J1 [162], while use of the
calibrated O 2p orbital leads to J2E1:2J1; J3E0:60J1;
and J4E2:6J1 (see Section 6.3). The first excitation
energy of the dimer unit in Cs2V4O9 is jJ4j; which is
greater than 2jJ1j in both estimates. The first excitation
energy of the square unit in CaV4O9 is jJ3j; which is
approximately 0.7 jJ1j in both estimates. The first
excitation energy of the zigzag linear tetramer in
(DPP)V4O9 depends on the jJ2=J1j ratio (Fig. 53), and
becomes much smaller than J3j j if the ratio is increased
beyond 1.2. Thus, the first excitation energies of
(DPP)V4O9, CaV4O9 and Cs2V4O9 are expected to
increase in the order (DPP)V4O9oCaV4O9oCs2V4O9.
This explains the trends in the magnetic susceptibilities
of (DPP)V4O9, CaV4O9 and Cs2V4O9 pointed out
above.

7.7. Anisotropy in the spin exchange interactions of

a0-NaV2O5, CaV2O5 and MgV2O5

The oxides a0-NaV2O5 [160,163], CaV2O5 [161,164]
and MgV2O5 [165,166] consist of V2O5 layers that are
made up of VO5 square pyramids (Fig. 54). The
arrangement of the vanadium atoms in this layer (Fig.
54) may be described as made up of two-leg ladders
[167]. In each ladder chain, adjacent VO5 square
pyramids are joined by corner sharing along the legs
and in the rungs. Between adjacent ladder chains,
neighboring VO5 square pyramids are joined by edge
sharing. All vanadium atoms of CaV2O5 and MgV2O5

are in the oxidation state +4, so there exists one
unpaired spin at each vanadium site. The magnetic
susceptibility of CaV2O5 and MgV2O5 is described by
three different spin–spin exchange parameters (i.e., Jr; Jl

and Je in Fig. 54) [167,168]. In contrast, there is one
unpaired spin per two vanadium atoms in a0-NaV2O5,
and the magnetic susceptibility of a0-NaV2O5 above
100K is described by one spin exchange parameter
[167,169]. It is important to understand how a0-NaV2O5

exhibits the magnetic 1D character despite the fact that
it has a 2D layered structure as do CaV2O5 and MgV2O5

[154,170]. It is also interesting to examine if CaV2O5

and MgV2O5 can be described as a spin ladder system
in terms of the spin exchange interactions between spin
sites.

A spin monomer in the V2O5 layers of CaV2O5 and
MgV2O5 is represented by the (VO5)

6� square pyramid
containing a V4+ ion. Thus a corner-sharing spin dimer
of CaV2O5 and MgV2O5 is represented by (V2O9)

10�

(Fig. 55a and b), and an edge-sharing spin dimer of
CaV2O5 and MgV2O5 by (V2O8)

8� (Fig. 55c). For a spin
monomer of CaV2O5 and MgV2O5, the magnetic orbital
c is represented by the xy orbital (Fig. 56a). In such
spin dimers, the two magnetic orbitals c interact to
form bonding and antibonding levels (cþ and c�;
respectively), and these levels are each singly occupied
(Fig. 56b).

There is only one unpaired spin per formula unit in
a0-NaV2O5, and all vanadium atoms are equivalent
[154,160]. Therefore, in the spin dimers representing two



ARTICLE IN PRESS

Fig. 55. (a–c) Spin dimers of the V2O5 layers in CaV2O5 and MgV2O5.

(d, e) Spin dimers of the V2O5 layers in a0-NaV2O5. (a) Corner-sharing

V2O9 defining the rung of the ladder chain. (b) Corner-sharing V2O9

along the legs of the ladder chain. (c) Edge-sharing V2O8 between two

adjacent ladder chains. (d) (V4O20)
22� spin dimer describing the

interaction between two adjacent rungs within a ladder chain. (e)

(V4O22)
26� spin dimer describing the interaction between two adjacent

rungs between neighboring ladder chains.

Fig. 56. (a) Magnetic orbital of a spin monomer in CaV2O5 and

MgV2O5. (b) Orbital interaction diagram relevant for the spin dimers

of CaV2O5 and MgV2O5. (c) Orbital interaction diagram relevant for

the spin dimers of a0-NaV2O5.

Fig. 54. (a) Schematic view of the V2O5 layer of AV2O5

(A ¼ Na;Ca;Mg). (b) Arrangement of the vanadium atoms in the

V2O5 layer of AV2O5 (A ¼ Na;Ca;Mg).
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adjacent vanadium atoms of a0-NaV2O5, namely,
(V2O9)

9� (Fig. 55a and b) and (V2O8)
7� (Fig. 55c), the

cþ level is singly occupied and the c� level is empty so
that one of these spin dimers should act as a spin
monomer. The energy split between cþ and c� is largest
for the corner-sharing spin dimer shown in Fig. 55a (i.e.,
the rung). Consequently, each rung of the ladder chains
is a spin monomer in a0-NaV2O5. Thus in discussing the
spin exchange interactions in a0-NaV2O5, it is necessary
to consider only two spin dimers. One is the (V4O20)

22�

spin dimer (Fig. 55d) for the intraladder interaction, and
the other is the (V4O22)

26� spin dimer (Fig. 55e) for the
interladder interaction. In each of these spin dimers, the
two spin orbitals cþ interact to form bonding and
antibonding levels cþþ and cþ�; respectively, as
depicted in Fig. 56c. The energy separation Deþ between
the cþþ and cþ� levels is the spin orbital interaction
energy De needed to discuss the spin exchange interac-
tions in a0-NaV2O5. The Deþ values calculated for the
intra- and interladder interactions are 190 and 10meV,
respectively. Namely, the spin exchange interaction
between the rungs is stronger within each ladder than
that between adjacent ladder chains by a factor of 360.
Thus the spin exchange interactions in a0-NaV2O5 are
highly 1D along the ladder direction. This explains why
the magnetic susceptibility of this compound above
100K is well described by a spin 1/2 Heisenberg chain.

Finally, we discuss the spin exchange interactions of
CaV2O5 and MgV2O5. The values of Jr; Jl and Je

determined experimentally [167,171] and theoretically
[51] are summarized in Table 19. As for CaV2O5, both
the first principles study of Korotin et al. [51] and the
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Table 19

Experimental and calculated spin exchange parameters (in K=kB) of

CaV2O5 and MgV2O5

CaV2O5 MgV2O5

Jr Jl Je Jr Jl Je

(a) Experimental fitting

Ueda [167] �730 �587 �170 �511 �565 �201

Miyahara et al.

[171]a
�670 �67 �45

Miyahara et al.

[171]b
�665 �135 +25

(b) Theoretical studies

LDA+U [51] �608 �122 +28 �92 �144 �60

�ðDeÞ2c �1.00 �0.38 �0.08 �0.29 �0.45 �0.21

aResult of the fitting under the constraint of Jl=Jr ¼ 0:1:
bResult of the fitting under the constraint of Jl=Jr ¼ 0:2:
cRelative �ðDeÞ2 values with respect to the largest value, i.e.,

50,600 (meV)2, as the reference.

Fig. 57. (a) Perspective view of the crystal structure of Cu4O3. (b)

Perspective view of the Cu2O3 spin lattice of Cu4O3.

M.-H. Whangbo et al. / Journal of Solid State Chemistry 176 (2003) 417–481466
present EHTB study show that the extent of antiferro-
magnetic interaction in the three exchange paths
decrease in the order, JrbJl ;bJe: Thus, CaV2O5 is
better described as a weakly coupled-dimer system
rather than as a ladder system. This result is in
agreement with the analysis of Miyahara et al. [171]
but not with that of Ueda [167]. Miyahara et al. pointed
out [171] that the experimental fitting analysis is affected
by the presence impurity phase in the sample. As for
MgV2O5, the first principles study of Korotin et al. [51]
and the present EHTB study show that Jl is the
strongest spin exchange path. In addition, both studies
produce similar Jr=Jl and Je=Jl ratios. Since the Je=Jl

ratio (i.e., B0.4) is not negligible compared with the
Jr=Jl ratio (i.e., B0.6), MgV2O5 cannot be regarded a
ladder system. As pointed out earlier [170], the spin
exchange interaction of the rung is much weaker in
MgV2O5 than in CaV2O5 because the V–O–V bridge of
the rung has a longer V–O bond in MgV2O5 than in
CaV2O5.

In terms of the topological arrangements of their
vanadium atoms, the V2O5 layers of the three oxides a0-
NaV2O5, CaV2O5 and MgV2O5 can be described as
constructed from two-leg ladders (Fig. 54b). In terms of
the relative strengths of the spin exchange interactions,
however, none of these three compounds belongs to a
spin ladder system. A similar situation is found for
molecular crystals possessing ladder-like arrangements
of spin-carrying molecular units, which have been
discussed in terms of spin ladders [172–177]. However,
a structural ladder is not necessarily a spin ladder in
terms of spin exchange interaction because the overlap
between magnetic orbitals is not isotropic. Our spin
dimer analyses show that many of the molecular solids
with ladder-like structural arrangements are not spin
ladder systems [178].
7.8. Long range magnetic ordering in paramelaconite

Cu4O3 and cupric oxide CuO

7.8.1. Paramelaconite Cu4O3

Paramelaconite Cu4O3 is a mineral with interesting
magnetic properties [179]. The Cu2O3 lattice of spin-1/2
Cu2+ ions results from Cu4O3 when the diamagnetic
Cu+ ions are removed (Fig. 57). The building blocks of
the Cu2O3 lattice are the CuO2 ribbon chains that are
made up of edge-sharing CuO4 square planes. A neutron
diffraction study [180] reveals that Cu4O3 undergoes a
magnetic phase transition below 42.3K leading to a
supercell (2a; 2b; 2c), namely, the phase transition
doubles the unit cell along each crystallographic
direction [180]. The magnetic susceptibility shows a
maximum around 75K and a sharp decrease below
42.3K [180], which suggest an antiferromagnetic phase
transition. Ag2Cu2O3 is isostructural and isoelectronic
with Cu4O3 [181–183]. The structure of Ag2Cu2O3

results when the Cu+ ions of Cu4O3 are replaced with
Ag+ ions, i.e., Ag2Cu2O3 has the same Cu2O3 spin
lattice as found for Cu4O3. The magnetic susceptibility
of Ag2Cu2O3 shows a broad maximum at B80K
[182,183] and a sharp decrease below 60K [182], which
again suggest an antiferromagnetic phase transition. So
far no study has been reported concerning the magnetic
structure of Ag2Cu2O3 below 60K.

The magnetic structures of Cu4O3 and Ag2Cu2O3

raise important questions. Each CuO2 ribbon chain has
two spin-1/2 Cu2+ ions per unit cell (Fig. 57b) so that an
antiferromagnetic ordering such as (mk)N along each
chain does not double the unit cell along the a- and
b-direction. A unit cell of the Cu2O3 lattice has four
layers of CuO2 ribbon chains (parallel to the ab-plane)
(Fig. 57b). Thus, an antiferromagnetic ordering such
as (mkmk)N in the successive layers of CuO2 ribbon
chains does not double the unit cell along the



ARTICLE IN PRESS
M.-H. Whangbo et al. / Journal of Solid State Chemistry 176 (2003) 417–481 467
c-direction. It was examined [79] recently what kind of
spin ordering takes place in the Cu2O3 lattice below
42.3K to double the unit cell along each crystal-
lographic direction

Each CuO4 square plane is a spin monomer of the
Cu2O3 lattice, in which layers of CuO2 ribbon chains
parallel to the a-direction alternate with layers of CuO2

ribbon chains parallel to the b-direction (Fig. 57b). In
each layer of CuO2 ribbon chains the plane of each
ribbon chain is perpendicular to the layer. The ribbon
chains between adjacent layers are condensed by sharing
their O(2) atoms such that each O(2) atom is located at
the center of the Cu4 tetrahedron made up of the four
surrounding Cu(2) atoms. There are two kinds of
Cu–O–Cu superexchange paths to consider in the
Cu2O3 lattice, i.e., the intra- and interchain Cu–O–Cu
paths. The interchain Cu–O–Cu paths have a signifi-
cantly larger +Cu–O–Cu angle than do the intrachain
Cu–O–Cu paths (see below), so the interchain Cu–O–Cu
paths provide a stronger antiferromagnetic interaction
(Table 20). In each CuO4 square plane, two O(1) atoms
are located at diagonally opposite corners, and two O(2)
atoms occupy the remaining corners (Fig. 57b). Thus,
the O(1) and O(2) atoms alternate on one edge of each
CuO2 ribbon chain, but the O(2) and O(1) atoms do on
the opposite edge. This structural feature of opposite
senses of O(1) and O(2) alternation plays a vital role
in the spin ordering along the c-direction.

Table 20 reveals that the interchain SE interaction
is more strongly antiferromagnetic than the intrachain
SE interaction because the SE path Cu–O–Cu has a
significantly larger +Cu–O–Cu angle in the interchain
than in the intrachain NN interaction (i.e., 114.8� vs.
95.8� in Cu4O3, and 116.9� vs. 104.8� in Ag2Cu2O3).
Each O(2) atom is the common bridging point of four
interchain Cu–O–Cu superexchange paths (Fig. 57b).
Fig. 58a shows the most favorable arrangement of four
Cu2+ spins surrounding a single O(2) atom, which
occurs between two adjacent CuO2 ribbon chains. This
spin arrangement around O(2) will be referred to as the
mm/kk arrangement. The most energetically favorable
arrangement between two adjacent layers of CuO2

ribbon chains is presented in Fig. 58b, where every
Table 20

De and J values calculated for the intrachain and interchain SE

interactions of the Cu2O3 lattices in Cu4O3 and Ag2Cu2O3
a

Interaction Cu4O3
b Ag2Cu2O3

c

De (meV) J=kB (K) De (meV) J=kB (K)

Intrachain 51 �17.4 42 �11.8

Interchain 85 �48.3 91 �55.4

aThe J values were calculated using the expression J ¼
�/ðDeÞ2S=Ueff with Ueff ¼ 1:74 eV.

bCalculated using the crystal structure of Ref. [179].
cCalculated using the crystal structure of Ref. [182].
shared O(2) atom the mm/kk arrangement. As a
consequence, each CuO2 ribbon chain adopts the
(mmkk)N spin arrangement (Fig. 58c) hence doubling
its repeat distance. Therefore, the unit cell of Cu4O3 is
doubled along the a- and b-directions. For convenience,
the two layers of CuO2 ribbon chains of Fig. 58b may be
referred to as a mm/kk-double-layer.

To consider the spin ordering along the c-direction, it
should be recalled that the O(1) and O(2) atom
alternations on the two edges of a CuO2 ribbon chain
have opposite senses (Fig. 57b). Suppose that another
layer of CuO2 ribbon chains is condensed to a mm/kk-
double-layer in which each shared O(2) atom has the
mm/kk arrangement. Each O(2) atom joining two such
layers can have either the mk/mk or mk/km spin
arrangement shown in Fig. 59a. These two arrange-
ments are energetically equivalent. Consequently, the
new set of shared O(2) atoms generated by the
additional layer can adopt either the spin arrangement
of Fig. 59b or that of Fig. 59c, because the two
interchain spin arrangements mk/mk and mk/km
available for the O(2) atoms are the same in energy. It
is convenient to describe the spin ordering of the Cu2O3

lattice along the c-direction in terms of stacking mm/kk-
double-layers. The stacking between two mm/kk-dou-
ble-layers can be achieved by adopting the mk/mk or
mk/km spin arrangement between them. Thus there
occur two stacking patterns between adjacent mm/kk-
double-layers, which we may refer to as the a and b
arrangements. Then the stacking of mm/kk-double-
layers can give rise a large number of repeat patterns.
Fig. 58. (a) Most favorable spin arrangement of four Cu2+ ions

around a shared O(2) atom between adjacent CuO2 ribbon chains. (b)

Most favorable interchain spin arrangement between adjacent layers of

CuO2 ribbon chains. (c) (mmkk)N arrangement of spins in a CuO2

ribbon chain. Filled and empty circles represent the Cu2+ ions with

up- and down-spins, respectively.



ARTICLE IN PRESS

Fig. 59. (a) mk/mk and mk/km arrangements of spins around each

O(2) atom. (b, c) Two equivalent interchain spin arrangements that can

be used for the stacking between two mm/kk-double-layers. Filled and

empty circles represent the Cu2+ ions with up- and down-spins,

respectively.

Fig. 60. Stacking arrangement ðabbaÞ
N

in the Cu2O3 lattice that

doubles the unit cell along the a-; b- and c-directions. Filled and empty

circles represent the Cu2+ ions with up- and down-spins, respectively.

Each rectangular box represents a unit cell in the absence of the

magnetic phase transition.
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The patterns such as ðaaÞ
N

and ðabÞ
N

do not double the
unit cell along the c-direction, while the patterns such as
ðabaaÞ

N
; ðaabaÞ

N
; ðaaabÞ

N
; ðabbaÞ

N
; and ðaabbÞ

N
do.

As an example, Fig. 60 depicts the repeat pattern
ðabbaÞ

N
: In principle, the unit cell along the c-direction

can be increased by a factor of any integer nX2:
Therefore, the experimental observation of the c-axis
doubling means that the spin orderings such as
ðabbaÞ

N
; ðaabbÞ

N
; ðbaabÞ

N
and ðbbaaÞ

N
are statisti-

cally the most probable arrangements, given the fact
that the spin arrangements mk/mk and mk/km are
equally valid for the stacking between mm/kk-double-
layers.

The above discussion of spin ordering along the c-
direction leads to two important implications. First, the
freedom of choice between the mk/mk and mk/km
arrangements for the stacking between mm/kk-double-
layers should give rise to spin fluctuation in the Cu2O3

spin lattice, and the extent of this spin fluctuation should
depend on temperature. Second, the ordered spin
arrangements of the Cu2O3 lattice that explain the
observed superlattice formation differ from conven-
tional antiferromagnetic ordering. Table 20 reveals that
the spin exchange parameters J calculated for Ag2Cu2O3

are very similar to those calculated for Cu4O3. Thus it is
expected that the magnetic phase transition of Ag2-
Cu2O3 at 60K should double the unit cell along each
crystallographic direction, and the Cu2O3 lattice of
Ag2Cu2O3 should exhibit spin fluctuation.
7.8.2. Cupric oxide CuO

The magnetic properties of cupric oxide CuO have
been examined extensively in studies including magnetic
susceptibility [184–188], neutron diffraction [189–191],
neutron scattering [192], NMR [193–195] and specific
heat measurements [196]. The structural building blocks
of cupric oxide are CuO2 ribbon chains, and the 3D
lattice of CuO is constructed from these CuO2 chains by
oxygen corner-sharing (Fig. 61a) [197]. The ribbon
planes of every two CuO2 chains condensed by corner-
sharing are not perpendicular to each other (Fig. 61b).
Thus each Cu2+ site is connected to its 10 adjacent
Cu2+ sites by four kinds of Cu–O–Cu superexchange
paths [i.e., Cu(1)–O–Cu(2), Cu(1)–O–Cu(3), Cu(1)–O–
Cu(4) and Cu(1)–O–Cu(5)] (Fig. 61c). Each Cu2+ ion is
surrounded by two additional Cu2+ ions unconnected
by a Cu–O–Cu superexchange path (Fig. 61a). The 12
Cu2+ ions around each Cu2+ ion are grouped into six
pairs related by inversion symmetry.

As the temperature is increased above TN1 ¼ 231K,
the magnetic susceptibility of CuO does not decrease
according to the Curie–Weiss law, but increases, passes
through a wide maximum at 540K and then diminishes
[184]. Thus, CuO behaves as 1D antiferromagnetic
chains above TN1: Below TN1 ¼ 231K, CuO becomes
a 1D collinear antiferromagnet with a magnetic moment
0:68 mB per Cu2+ ion [189,192], which is considerably
smaller than the pure spin value 1 mB: CuO undergoes a
phase transition below TN1 to form an incommensurate
antiferromagnetic structure with propagation vector
(0.506, 0, �0.483). Below TN2 ¼ 212:5K the latter is
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Fig. 61. (a) Perspective view of corner-sharing CuO2 ribbon chains

in cupric oxide CuO. (b) Zoomed-in view of corner-sharing CuO2

ribbon chains. (c) Zoomed-in view of a CuO2 ribbon chain showing

the unit cell vector directions. The strongly interacting Cu–O–Cu

superexchange paths are presented by filled cylinders.

Table 21

Geometrical parameters and ðDeÞ2 values associated with the four

superexchange paths Cu(1)�O�Cu(j) (j ¼ 225) of CuOa,b

Path Cu?Cu Cu�O +Cu�O�Cu �ðDeÞ2 �JAF

j ¼ 2 3.749 1.961, 1961 145.8 51,500 73

j ¼ 3 2.901 1.961, 1.951 95.7 3360 4.8

j ¼ 4 3.173 1.951, 1.951 108.9 1160 1.6

j ¼ 5 3.083 1.951, 1.961 104.0 360 0.5

aThe distances in Å units, and the angles in degrees.
bThe (De)2 values are in units of (meV)2, and the �JAF values in

units of meV.
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transformed into a commensurate antiferromagnetic
structure with propagation vector (0.5, 0, �0.5)
[189,192]. Thus, the magnetic phase transition below
TN2 doubles the unit cell along the a- and c-directions.
The strongest antiferromagnetic interactions between
the adjacent Cu2+ ions of CuO occur along the ½10%1	
direction through the superexchange paths having the
largest +Cu–O–Cu angle (145.8�), i.e., Cu(1)–O–Cu(2).
(In Fig. 61b and c, the Cu–O bonds representing these
paths are indicated by filled cylinders.) The spin
exchange parameter 9J9 for these 1D antiferromagnetic
chains was estimated to be 67720meV from the spin-
wave velocity v ¼ jJjd ¼ 250775 using the distance d

between the nearest neighbor Cu2+ ions along the ½1 0 %1	
direction (i.e., 3.75 Å) [192]. This agrees well with the
value of 73meV [195] estimated from the relationship
jJj ¼ 1:560 kBTmax for the magnetic susceptibility of a
1D antiferromagnetic Heisenberg chain using Tmax ¼
540K [184], where Tmax is the temperature at which the
magnetic susceptibility is maximum.

The spin exchange interactions between the 1D
antiferromagnetic chains of CuO have been regarded
as weak because the associated +Cu–O–Cu angles are
much closer to 90� than to 180� (Table 21). To a first
approximation, therefore, the incommensurate and
commensurate magnetic superstructures of CuO are
ordered structures of the 1D antiferromagnetic chains.
Recently, we examined [198] whether an ordering of the
1D antiferromagnetic chains gives rise to other magnetic
superstructures equally probable as the (2a; 0; 2c) super-
structure and whether the interactions between the 1D
antiferromagnetic chains possess any energetic or
statistical factor favoring the (2a; 0; 2c) superstructure.
The ðDeÞ2 values calculated for the four superexchange
interactions of CuO are listed in Table 21, where the
corresponding JAF values were calculated using
Ueff ¼ 705meV. This Ueff value reproduces the J value
of –73meV for the 1D antiferromagnetic chain made up
of the Cu(1)–O–Cu(2) paths. As expected, the anti-
ferromagnetic exchange interaction through the Cu(1)–
O–Cu(2) path is by far the strongest. The second
strongest antiferromagnetic exchange interaction occurs
through the Cu(1)–O–Cu(3) paths. The remaining two
superexchange paths Cu(1)–O–Cu(4) and Cu(1)–O–
Cu(5) provide much weaker antiferromagnetic interac-
tions. It is noted that the Cu(1)–O–Cu(3) path has a
smaller +Cu–O–Cu angle than do the Cu(1)–O–Cu(4)
and Cu(1)–O–Cu(5) (i.e., 95.7� vs. 108.9� and 104.0�),
but provides a stronger antiferromagnetic interaction.
The Cu(1) and Cu(3) atoms are connected by two
Cu–O–Cu bridges. In contrast, the Cu(1) and Cu(4)
atoms are connected by a single Cu–O–Cu bridge, and
so are the Cu(1) and Cu(5) atoms.

It is important to probe what possible commensurate
magnetic superstructures of CuO result from ordering of
1D antiferromagnetic chains. For simplicity, we limit
our discussion to those orderings that either keep the
chemical unit cell (a; b; c) or double the unit cell along
the a-, b- or c-direction. With this restriction, there are
only eight different ways of ordering the 1D antiferro-
magnetic chains surrounding a given 1D antiferromag-
netic chain (Fig. 62). The two spin arrangements of
Fig. 62a retain the chemical unit cell. The three
Cu(1)–O–Cu(j) (j ¼ 325) superexchange interactions,
which control the interactions between the 1D anti-
ferromagnetic chains, are weak. Thus, one might
speculate that the three interchain superexchange inter-
actions can be either weakly ferromagnetic or weakly
antiferromagnetic. Then all the eight possible spin
arrangements of Fig. 62 are equally probable. This
leads to the prediction that at temperatures below TN2;
a unit doubling should be observed not only along the
a- and c-directions due to the spin arrangements of
Fig. 62b and d, but also along the b-direction due to the
spin arrangements of Fig. 62b and c. The latter
prediction is inconsistent with the results of the available
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Fig. 62. Eight possible spin arrangements in the 10 Cu2+ ions

connected, by superexchange paths, to a given Cu2+ ion. The up-

spin and down-spin Cu2+ sites are indicated by shaded and unshaded

circles, respectively. For convenience, the central Cu2+ ion is assumed

to have an up-spin. These arrangements retain the chemical unit cell

(a–c) in (a). However, they lead to a (2a; 2b; 2c) supercell in (b), a

(a; 2b; c) supercell in (c), and a (2a; b; 2c) supercell in (d).

Table 22

Nature of the spin ordering along the Cu(1)�O�Cu(j) (j ¼ 225) spin

exchange paths in cupric oxide CuO

Superstructurea Cu(1)�O�Cu(j)a

j ¼ 2 j ¼ 3 j ¼ 4 j ¼ 5

(a; b; c)b AFM FM AFM AFM

(a; b; c)c AFM AFM AFM FM

(2a; 2b; 2c) AFM AFM & FM FM AFM & FM

(a; 2b; c) AFM (mmkk)N AFM (mmkk)N
(2a; b; 2c) AFM (mmkk)N FM (mmkk)N

aThe Cu(1)�O�Cu(j) superexchange paths are defined in Fig. 61c.

The symbols AFM and FM mean antiferromagnetic and ferromag-

netic arrangements, respectively.
bFor the first arrangement of Fig. 62a.
cFor the second arrangement of Fig. 62a.

Table 23

Local spin distributions around Cu2+ ions in the ordered spin

structures of CuO that result from the ordering of 1D antiferromag-

netic chains

Superstructure Spin distributiona NCSP
b NNCSP

b

(a; b; c) m: (4m, 8k) 0 5

k: (8m, 4k) 0 5

(2a; 2b; 2c) m: (6m, 6k) 0 5

k: (6m, 6k) 0 5

(a; 2b; c) m: (4m, 8k) 4 1

k: (8m, 4k) 4 1

(2a; b; 2c) m: (6m, 6k) 4 1

k: (6m, 6k) 4 1

aThe notations are defined as follows: for example, m: (mm; nk)

means that the 12 spins surrounding each up-spin Cu2+ site divided

into m up-spins and n down-spins.
bNCSP refers to the number of compensating spin pairs, and NNCSP

the number of non-compensating spin pairs.
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experiments [189–192]. Consequently, it is necessary to
consider that there exists an energetic factor favoring
the spin arrangements of Fig. 62d over those of
Fig. 62b and c.

Table 22 summarizes the nature of the long-range spin
ordering along the directions of the Cu(1)–O–Cu(2),
Cu(1)–O–Cu(3), Cu(1)–O–Cu(4) and Cu(1)–O–Cu(5)
spin exchange paths in the ordered magnetic structures
that result from the eight spin arrangements of Fig. 62.
From the consideration of these long range spin orders,
it is not clear why CuO prefers the ordered spin
structures leading to the (2a; b; 2c) supercell over the
other ordered spin structures. Thus we analyze the local
spin distributions around each spin site. As already
pointed out, each Cu2+ ion is surrounded by 12 nearest-
neighbor Cu2+ ions grouped into six pairs of Cu2+ ions
related by inversion symmetry at the central Cu2+ ion.
The 10 nearest-neighbor Cu2+ ions that are not
involved in making a 1D antiferromagnetic chain with
the central Cu2+ ion lie within the narrow distance
range of 2.90–3.17 Å (Fig. 61, Table 21). It is of interest
to see how up-spins and down-spins are distributed
among the 12 nearest-neighbor spin sites surrounding
each spin site. Table 23 summarizes these local spin
distributions in the ordered magnetic structures derived
from the eight spin arrangements of Fig. 62. The 12
Cu2+ ions surrounding each Cu2+ ion are divided into
equal numbers of up-spin and down-spin ions in the
ordered spin structures leading to the (2a; b; 2c) and
(2a; 2b; 2c) supercells, but into unequal numbers of up-
spin and down-spin ions in the ordered spin structures
leading to the (a; 2b; c) supercell or retaining the
chemical unit cell (a; b; c). Thus, in terms of the numbers
of up-spin and down-spin ions around each spin site, the
local spin arrangement around each Cu2+ ion is
balanced only in the ordered spin structures leading to
the (2a; b; 2c) and (2a; 2b; 2c) supercells.
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To further distinguish the ordered spin structures
possessing the unit cells (a; b; c), (a; 2b; c), (2a; b; 2c) and
(2a; 2b; 2c), we examine the nature of spin distribution in
each pair of spin sites related by inversion symmetry at
each Cu2+ site. Of the six pairs of spin sites surrounding
around each spin site, one pair is used to form a 1D
antiferromagnetic chain with the central Cu2+ ion. Thus
only the spin arrangements in the remaining five pairs
are important for the interchain interactions. In each of
these five pairs, the two spins can be either opposite (i.e.,
compensating) or identical (i.e., non-compensating).
The number of compensating spin pairs (NCSP) and
that of non-compensating spin pairs (NNCSP) around
each spin site in the ordered spin structures are
summarized in Table 23. The spin distribution around
each spin site is more balanced when NCSP is larger.
Thus, in terms of the number of compensating spin pairs
around each spin site, the local spin arrangement
around each Cu2+ ion is much better balanced in the
ordered spin structures leading to the unit cells (2a; b; 2c)
and (a; 2b; c) supercells than in those leading to the unit
cells (a; b; c) and (2a; 2b; 2c).

The above discussion reveals that the local spin
arrangement around each Cu2+ ion is most balanced
in the ordered spin structures leading to the unit cells
(2a; b; 2c) both in terms of the numbers of up-spins and
down-spins around each spin site and in terms of the
number of compensating spin pairs around each spin
site. The experimental observation of the (2a; b; 2c)
supercell below TN2 leads us to conclude that such a
balanced local spin distribution around a spin site with
inversion symmetry is energetically favorable. If this
factor is strong, it should be possible to observe weak
magnetic reflection peaks corresponding to the (a; 2b; c)
and (2a; 2b; 2c) supercells.
8. Concluding remarks

In this article we reviewed three important features of
theoretical studies on the low-energy excitation energies
of magnetic solids, namely, analyses of the eigenvalue
structures of spin Hamiltonians, quantitative calcula-
tions of spin exchange parameters using first principles
electronic structure computations, and estimations of
the relative strengths of spin exchange parameters using
qualitative electronic structure calculations. Details of
our results concerning how antisymmetric and aniso-
tropic interactions affect the eigenvalue structures of
isotropic spin Hamiltonian are summarized in Appendix
A, B, C. Our survey of the spin exchange interactions
and magnetic structures of various magnetic solids
reveals that the relative strengths of SE and SSE
interactions can be estimated almost semiquantitatively
in terms of spin dimer analysis based on EHTB
calculations. The relative strengths of spin exchange
interactions deduced from this analysis led us to
satisfactory explanations of the observed magnetic
structures and new questions to explore experimentally.
This analysis provides an expedient and reliable way to
assign strongly interacting spin exchange paths and
correctly interpret results of magnetic susceptibility,
inelastic neutron scattering or Raman scattering mea-
surements.

It should be emphasized that strongly interacting spin
exchange paths of a magnetic solid are determined by
the overlap between its magnetic orbitals. For a
magnetic solid of any interest, the magnetic orbital(s)
are not made up of atomic s-orbitals. Therefore, the
overlap between adjacent magnetic orbitals in a
magnetic solid cannot be isotropic. As a consequence,
the strongly interacting spin unit of a magnetic solid
does not necessarily have the same geometrical feature
as the arrangement of its magnetic ions or spin-carrying
molecules. Thus electronic structure considerations are
essential for selecting a correct set of spin exchange
paths to employ. It is anticlimactic to interpret experi-
mental results in terms of a spin lattice model that one
can readily prove to be irrelevant on the basis of simple
electronic structure considerations.
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Appendix A

Nonzero matrix elements /S0 Ms0jĤasymjS MsS
of the asymmetric Hamiltonian Ĥasym for S1 ¼ S2 ¼
1=2; 1; 3=2; 2 and 5/2.

(a) S1 ¼ S2 ¼ 1=2

0 0
� ��Ĥasym 1 0

�� �
¼ � 1 0

� ��Ĥasym 0 0
�� �

¼ ð1=2ÞiD:

(b) S1 ¼ S2 ¼ 1

0 0
� ��Ĥasym 1 0

�� �
¼ � 1 0

� ��Ĥasym 0 0
�� �

¼
ffiffiffiffiffiffiffiffi
2=3

p
iD;

1 0
� ��Ĥasym 2 0

�� �
¼ � 2 0

� ��Ĥasym 1 0
�� �

¼
ffiffiffiffiffiffiffiffi
4=3

p
iD;
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1 71
� ��Ĥasym 2 71

�� �
¼ � 2 71

� ��Ĥasym 1 71
�� �

¼ iD:

(c) S1 ¼ S2 ¼ 3=2

0 0
� ��Ĥasym 1 0

�� �
¼ � 1 0

� ��Ĥasym 0 0
�� �

¼
ffiffiffiffiffiffiffiffi
5=4

p
iD;

1 0
� ��Ĥasym 2 0

�� �
¼ � 2 0

� ��Ĥasym 1 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
16=5

p
iD;

2 0
� ��Ĥasym 3 0

�� �
¼ � 3 0

� ��Ĥasym 2 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
81=20

p
iD;

1 71
� ��Ĥasym 2 71

�� �
¼ � 2 71

� ��Ĥasym 1 71
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
12=5

p
iD;

2 71
� ��Ĥasym 3 71

�� �
¼ 3 71
� ��Ĥasym 2 71

�� �
¼

ffiffiffiffiffiffiffiffiffiffi
18=5

p
iD;

2 72
� ��Ĥasym 3 72

�� �
¼ � 3 72

� ��Ĥasym 2 72
�� �

¼ ð3=2ÞiD:

(d) S1 ¼ S2 ¼ 2

0 0
� ��Ĥasym 1 0

�� �
¼ � 1 0

� ��Ĥasym 0 0
�� �

¼
ffiffiffi
2

p
iD;

1 0
� ��Ĥasym 2 0

�� �
¼ � 2 0

� ��Ĥasym 1 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
28=5

p
iD;

2 0
� ��Ĥasym 3 0

�� �
¼ � 3 0

� ��Ĥasym 2 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
324=35

p
iD;

3 0
� ��Ĥasym 4 0

�� �
¼ � 4 0

� ��Ĥasym 3 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
64=7

p
iD;

1 71
� ��Ĥasym 2 71

�� �
¼ � 2 71

� ��Ĥasym 1 71
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
147=35

p
iD;

2 71
� ��Ĥasym 3 71

�� �
¼ � 3 71

� ��Ĥasym 2 71
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
288=35

p
iD;

3 71
� ��Ĥasym 4 71

�� �
¼ � 4 71

� ��Ĥasym 3 71
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
60=7

p
iD;

2 72
� ��Ĥasym 3 72

�� �
¼ � 3 72

� ��Ĥasym 2 72
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
36=7

p
iD;

3 72
� ��Ĥasym 4 72

�� �
¼ � 4 72

� ��Ĥasym 3 72
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
48=7

p
iD;
3 73
� ��Ĥasym 4 73

�� �
¼ � 4 73

� ��Ĥasym 3 73
�� �

¼ 2iD:

(e) S1 ¼ S2 ¼ 5=2

0 0
� ��Ĥasym 1 0

�� �
¼ � 1 0

� ��Ĥasym 0 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
35=12

p
iD;

1 0
� ��Ĥasym 2 0

�� �
¼ � 2 0

� ��Ĥasym 1 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128=15

p
iD;

2 0
� ��Ĥasym 3 0

�� �
¼ � 3 0

� ��Ĥasym 2 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2187=140

p
iD;

3 0
� ��Ĥasym 4 0

�� �
¼ � 4 0

� ��Ĥasym 3 0
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1280=63

p
iD;

4 0
� ��Ĥasym 5 0

�� �
¼ � 5 0

� ��Ĥasym 4 0
�� �

¼ ð25=6ÞiD;

1 71
� ��Ĥasym 2 71

�� �
¼ � 2 71

� ��Ĥasym 1 71
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
32=5

p
iD:

2 71
� ��Ĥasym 3 71

�� �
¼ � 3 71

� ��Ĥasym 2 71
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
486=35

p
iD:

3 71
� ��Ĥasym 4 71

�� �
¼ � 4 71

� ��Ĥasym 3 71
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400=21

p
iD;

4 71
� ��Ĥasym 5 71

�� �
¼ � 5 71

� ��Ĥasym 4 71
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
50=3

p
iD;

2 72
� ��Ĥasym 3 72

�� �
¼ � 3 72

� ��Ĥasym 2 72
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243=28

p
iD;

3 72
� ��Ĥasym 4 72

�� �
¼ � 4 72

� ��Ĥasym 3 72
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
320=21

p
iD;

4 72
� ��Ĥasym 5 72

�� �
¼ � 5 72

� ��Ĥasym 4 72
�� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
175=12

p
iD;

3 73
� ��Ĥasym 4 73

�� �
¼ � 4 73

� ��Ĥasym 3 73
�� �

¼
ffiffiffiffiffiffiffiffiffiffi
80=9

p
iD;

4 73
� ��Ĥasym 5 73

�� �
¼ 5 73
� ��Ĥasym 4 73

�� �
¼ ð10=3ÞiD;

4 74
� ��Ĥasym 5 74

�� �
¼ � 5 74

� ��Ĥasym 4 74
�� �

¼ ð5=2ÞiD:
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Table 24

x 0–0.5 0.5–1.0 1.0–1.5 1.5–2.0

Eð0 0Þ
c0 3.7500 3.7502 3.7592 3.8090

c1 1.2500 1.2480 1.2159 1.1294

c2 �0.2291 �0.2216 �0.1770 �0.1193

c3 0.0725 0.0590 0.0302 0.0126

c4 �0.0200 �0.0100 �0.0027 �0.0006

sd 3.06 10�6 8.79 10�6 7.20 10�5 4.62 10�3

Eð1 0Þ
c0 2.7500 2.7501 2.7532 2.7674

c1 0.3500 0.3489 0.3378 0.3129

c2 �0.0694 �0.0650 �0.0491 �0.0324

c3 0.0278 0.0191 0.0085 0.0034

c4 �0.0108 �0.0036 �0.0008 �0.0002

sd 1.39 10�6 2.83 10�5 3.37 10�4 3.76 10�3

Eð2 0Þ
c0 0.7500 0.7503 0.7541 0.7559

c1 �0.2500 �0.2534 �0.2684 �0.2727

c2 �0.0205 �0.0058 0.0177 0.0214

c3 0.0479 0.0168 �0.0005 �0.0018

c4 �0.0333 �0.0050 �0.0001 0.0001

sd 1.04 10�6 2.72 10�5 2.12 10�4 3.20 10�3

Eð3 0Þ
c0 �2.2500 �2.2506 �2.2665 �2.3323

c1 �1.3500 �1.3435 �1.2852 �1.1695

c2 0.3191 0.2924 0.2084 0.1303

c3 �0.1482 �0.0949 �0.0383 �0.0142

c4 0.0642 0.0186 0.0036 0.0007

sd 2.99 10�6 1.49 10�5 7.80 10�5 3.77 10�3
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Appendix B

Eigenvalues of the Hamiltonian Ĥiso=asym ¼ ĤHDVV þ
Ĥasym as a function of the ratio x ¼ jD=Jj for S1 ¼ S2 ¼
1=2; 1; 3=2; 2 and 5/2.

(a) S1 ¼ S2 ¼ 1=2

Eð0 0Þ ¼ Jð1=4þ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ;

Eð1 0Þ ¼ J 1=4� 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p !
;

Eð171Þ ¼ Jð�1=4Þ:

(b) S1 ¼ S2 ¼ 1

Eð0 0Þ ¼ J 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8x2

p !
=2;

Eð1 0Þ ¼ J;

Eð2 0Þ ¼ J 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8x2

p !
=2;

Eð171Þ ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
;

Eð271Þ ¼ �J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
;

Eð272Þ ¼ �J:

(c) S1 ¼ S2 ¼ 3=2 (Table 24).

Eð171Þ ¼ J 1=4þ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 24x2

p !
;

Eð271Þ ¼ Jð3=4Þ;

Eð371Þ ¼ J 1=4� 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 24x2

p !
;

Eð272Þ ¼ J �3=4þ 3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p !
;

Eð372Þ ¼ J �3=4� 3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p !
;

Eð373Þ ¼ �ð9=4ÞJ:

(d) S1 ¼ S2 ¼ 2 (Table 25)

Eð3 0Þ ¼ �Eð1 0Þ þ 5J;

Eð272Þ ¼ J �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49� 48x2

p !
=2;

Eð372Þ ¼ 0;

Eð472Þ ¼ J �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49� 48x2

p !
=2;

Eð373Þ ¼ 2J �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p !
;

Eð473Þ ¼ 2J �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p !
;

Eð474Þ ¼ �4J:
(e) S1 ¼ S2 ¼ 5=2 (Table 26)

Eð471Þ ¼ �Eð271Þ þ 4:5J;

Eð373Þ ¼ J �7=4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81þ 80x2

p
=2

 !
;

Eð473Þ ¼ Jð�5=4Þ;

Eð573Þ ¼ J �7=4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81þ 80x2

p
=2

 !
;

Eð474Þ ¼ J �15=4þ 5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p !
;

Eð574Þ ¼ J �15=4� 5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p !
;

Eð575Þ ¼ �ð25=4ÞJ:
Appendix C

Nonzero matrix elements S0 Msh jĤisoþaniso S Msj i
of the Hamiltonian Ĥiso=aniso ¼ �J [aŜ1zŜ2zþ
bðŜ1xŜ2x þ Ŝ1yŜ2yÞ] for S1 ¼ S2 ¼ 1=2; 1, 3/2, 2
and 5/2.
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Table 25

x 0–0.5 0.5–1.0 1.0–1.5 1.5–2.0

Eð0 0Þ
c0 6.0000 5.9996 6.0053 6.0723

c1 2.0000 2.0041 1.9874 1.8729

c2 �0.2672 �0.2859 �0.2685 �0.1934

c3 0.0071 0.0497 0.0425 0.0201

c4 0.0371 �0.0043 �0.0036 �0.0010

sd 3.93 10�6 2.71 10�5 4.00 10�4 3.41 10�3

Eð1 0Þ
c0 5.0000 5.0001 5.0047 5.0302

c1 0.8000 0.7988 0.7825 0.7832

c2 �0.1279 �0.1231 �0.1003 �0.0708

c3 0.0403 0.0309 0.0161 0.0072

c4 �0.0127 �0.0052 �0.0014 �0.0004

sd 2.59 10�6 3.00 10�5 2.77 10�5 .91 10�3

Eð2 0Þ
c0 3.0000 3.0014 3.0234 3.0701

c1 0.2857 0.2703 0.1855 0.1002

c2 �0.2825 �0.2171 �0.0882 �0.0283

c3 0.2508 0.1149 0.0233 0.0042

c4 �0.1493 �0.0281 �0.0026 �0.0003

sd 1.50 10�6 3.11 10�5 3.21 10�4 5.86 10�3

Eð4 0Þ
c0 �4.0000 �4.0011 �4.0287 �4.1423

c1 �2.2857 �2.2744 �2.1729 �1.9731

c2 0.5497 0.5030 0.3567 0.2216

c3 �0.2579 �0.1646 �0.0659 �0.0243

c4 0.1122 0.0324 0.0062 0.0013

sd 3.93 10�6 5.80 10�5 1.75 10�4 3.41 10�3

Eð171Þ
c0 5.0000 5.0008 5.0238 5.1240

c1 2.1000 2.0916 2.0079 1.8320

c2 �0.4765 �0.4422 �0.3224 �0.2038

c3 0.2063 0.1388 0.0586 0.0222

c4 �0.0833 �0.0266 �0.0054 �0.0012

sd 4.91 10�6 1.78 10�5 4.68 10�4 5.33 10�3

Eð271Þ
c0 3.0000 3.0002 3.0071 3.0367

c1 0.6429 0.6403 0.6153 0.5632

c2 �0.1431 �0.1324 �0.0966 �0.0615

c3 0.0626 0.0414 0.0174 0.0067

c4 �0.0259 �0.0080 �0.0016 �0.0003

sd 5.09 10�6 4.04 10�5 3.51 10�5 7.19 10�3

Eð371Þ
c0 0.0000 0.0000 �0.0038 �0.0266

c1 �0.6000 �0.5997 �0.5866 �0.5470

c2 0.1021 0.1011 0.0834 0.0570

c3 �0.0258 �0.0251 �0.0140 �0.0060

c4 0.0033 0.0040 0.0012 0.0003

sd 1.15 10�6 2.96 10�5 4.32 10�4 1.12 10�3

Eð471Þ
c0 �4.0000 �4.0010 �4.0271 �4.1341

c1 �2.1428 �2.1322 �2.0365 �1.8483

c2 0.5175 0.4735 0.3356 0.2083

c3 �0.2431 �0.1551 �0.0620 �0.0229

c4 0.1058 0.0305 0.0058 0.0012

sd 4.70 10�6 3.82 10�5 9.01 10�5 1.04 10�3

Table 26

x 0–0.5 0.5–1.0 1.0–1.5 1.5–2.0

Eð0 0Þ
c0 8.7500 8.7480 8.7408 8.8261

c1 2.9167 2.9386 2.9767 2.8345

c2 �0.2127 �0.3079 �0.3822 �0.2915

c3 �0.2109 �0.0075 0.0564 0.0301

c4 0.2018 0.0160 �0.0044 �0.0015

sd 5.53 10�6 2.35 10�5 5.11 10�4 1.62 10�3

Eð1 0Þ
c0 7.7500 7.7500 7.7523 7.7799

c1 1.3500 1.3503 1.3426 1.2960

c2 �0.1524 �0.1537 �0.1442 �0.1140

c3 0.0220 0.0250 0.0198 0.0109

c4 0.0004 �0.0027 �0.0015 �0.0005

sd 2.76 10�6 2.57 10�5 4.98 10�4 4.14 10�3

Eð2 0Þ
c0 5.7500 5.7536 5.8041 5.9016

c1 0.9404 0.9014 0.7047 0.5260

c2 �0.6718 �0.5063 �0.2039 �0.0779

c3 0.6110 0.2677 0.0503 0.0100

c4 �0.3715 �0.0666 �0.0055 �0.0006

sd 1.87 10�6 2.03 10�5 3.66 10�4 3.69 10�3

Eð3 0Þ
c0 2.7500 2.7505 2.7619 2.7924

c1 �0.1278 �0.1335 �0.1761 �0.2314

c2 �0.1283 �0.1048 �0.0418 �0.0033

c3 0.1050 0.0575 0.0141 0.0019

c4 �0.0543 �0.0134 �0.0016 �0.0001

sd 1.28 10�6 8.25 10�5 3.02 10�4 5.36 10�3

Eð4 0Þ
c0 �1.2500 �1.2505 �1.2649 �1.3316

c1 �1.6071 �1.6021 �1.5496 �1.4330

c2 0.3228 0.3025 0.2277 0.1493

c3 �0.1294 �0.0896 �0.0398 �0.0158

c4 0.0498 0.0167 0.0036 0.0008

sd 4.10 10�6 2.67 10�5 9.41 10�5 4.73 10�4

Eð5 0Þ
c0 �6.2500 �6.2517 �6.2942 �6.4683

c1 �3.4722 �3.4547 �3.2984 �2.9921

c2 0.8424 0.7701 0.5445 0.3375

c3 �0.3978 �0.2530 �0.1008 �0.0371

c4 0.1738 0.0499 0.0095 0.0019

sd 7.28 10�6 5.55 10�5 2.99 10�4 5.92 10�3

Eð171Þ
c0 7.7500 7.7509 7.7817 7.9280

c1 3.2000 3.1909 3.0797 2.8238

c2 �0.6762 �0.6401 �0.4830 �0.3110

c3 0.2582 0.1900 0.0863 0.0337

c4 �0.0892 �0.0349 �0.0079 �0.0018

sd 7.19 10�6 3.23 10�5 2.83 10�4 5.49 10�3

Eð271Þ
c0 5.7500 5.7504 5.7634 5.8241

c1 1.4286 1.4241 1.3771 1.2709

c2 �0.2913 �0.2734 �0.2064 �0.1351

c3 0.1159 0.0807 0.0362 0.0144

c4 �0.0442 �0.0150 �0.0033 �0.0007

sd 5.83 10�6 9.40 10�5 7.35 10�5 4.77 10�3
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Table 26 (continued)

x 0–0.5 0.5–1.0 1.0–1.5 1.5–2.0

Eð371Þ
c0 2.7500 2.7507 2.7609 2.7821

c1 0.1333 0.1255 0.0863 0.0475

c2 �0.1339 �0.1004 �0.0405 �0.0133

c3 0.1246 0.0535 0.0107 0.0020

c4 �0.0781 �0.0132 �0.0012 �0.0001

sd 7.13 10�7 2.31 10�5 7.98 10�5 3.30 10�3

Eð571Þ
c0 �6.2500 �6.2516 �6.2926 �6.4600

c1 �3.3333 �3.3164 �3.1660 �2.8713

c2 0.8101 0.7406 0.5235 0.3243

c3 �0.3828 �0.2435 �0.0969 �0.0357

c4 0.1673 0.0480 0.0091 0.0019

sd 7.19 10�6 1.89 10�5 2.83 10�4 2.27 10�3

Eð272Þ
c0 5.7500 5.7513 5.7857 5.9293

c1 2.8928 2.8793 2.7533 2.5007

c2 �0.6895 �0.6337 �0.4525 �0.2819

c3 0.3165 0.2053 0.0834 0.0310

c4 �0.1346 �0.0401 �0.0078 �0.0016

sd 5.75 10�6 2.86 10�5 1.69 10�4 4.91 10�3

Eð372Þ
c0 2.7500 2.7504 2.7609 2.8052

c1 0.9167 0.9125 0.8741 0.7963

c2 �0.2135 �0.1965 �0.1411 �0.0886

c3 0.0969 0.0630 0.0258 0.0097

c4 �0.0411 �0.0123 �0.0024 �0.0005

sd 4.80 10�6 4.59 10�5 2.53 10�4 1.97 10�3

Eð472Þ
c0 �1.2500 �1.2503 �1.2590 �1.2995

c1 �0.8928 �0.8900 �0.8583 �0.7874

c2 0.1903 0.1789 0.1339 0.0862

c3 �0.0758 �0.0538 �0.0239 �0.0093

c4 0.0280 0.0100 0.0022 0.0005

sd 5.75 10�6 1.67 10�5 1.89 10�4 2.79 10�3

Eð572Þ
c0 �6.2500 �6.2514 �6.2875 �6.4350

c1 �2.9166 �2.9018 �2.7691 �2.5096

c2 0.7127 0.6513 0.4598 0.2844

c3 �0.3376 �0.2146 �0.0853 �0.0313

c4 0.1477 0.0424 0.0080 0.0016

sd 5.84 10�6 2.86 10�5 1.69 10�4 4.91 10�3
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(a) S1 ¼ S2 ¼ 1=2

1 71
� ��Ĥ 1 71

�� �
¼ �ða=4ÞJ;

1 0
� ��Ĥ 1 0

�� �
¼ ða=4� b=2ÞJ;

0 0
� ��Ĥ 0 0

�� �
¼ ða=4þ b=2ÞJ:

(b) S1 ¼ S2 ¼ 1

2 72
� ��Ĥ 2 72

�� �
¼ �aJ;

2 71
� ��Ĥ 2 71

�� �
¼ �bJ;
1 71
� ��Ĥ 1 71

�� �
¼ �bJ;

2 0
� ��Ĥ 2 0

�� �
¼ ða=3� 4b=3ÞJ;

1 0
� ��Ĥ 1 0

�� �
¼ aJ;

0 0
� ��Ĥ 0 0

�� �
¼ ð2a=3þ 4b=3ÞJ;

2 0
� ��Ĥ 0 0

�� �
¼ 0 0
� ��Ĥ 2 0

�� �
¼ ð

ffiffiffi
2

p
=3Þða� bÞJ:

(c) S1 ¼ S2 ¼ 3=2

3 73
� ��Ĥ 3 73

�� �
¼ �ð9a=4ÞJ;

3 72
� ��Ĥ 3 72

�� �
¼ ð�3a=4� 3b=2ÞJ;

2 72
� ��Ĥ 2 72

�� �
¼ ð�3a=4þ 3b=2ÞJ;

3 71
� ��Ĥ 3 71

�� �
¼ ð3a=20� 12b=5ÞJ;

2 71
� ��Ĥ 2 71

�� �
¼ ð3a=4ÞJ;

1 71
� ��Ĥ 1 71

�� �
¼ ð7a=20þ 12b=5ÞJ;

3 71
� ��Ĥ 1 71

�� �
¼ 1 71
� ��Ĥ 3 71

�� �
¼ ð

ffiffiffi
6

p
=5Þða� bÞJ;

3 0
� ��Ĥ 3 0

�� �
¼ ð9a=20� 27b=10ÞJ;

2 0
� ��Ĥ 2 0

�� �
¼ ð5a=4� b=2ÞJ;

1 0
� ��Ĥ 1 0

�� �
¼ ð41a=20þ 7b=10ÞJ;

0 0
� ��Ĥ 0 0

�� �
¼ ð5a=4þ 5b=2ÞJ;

3 0
� ��Ĥ 1 0

�� �
¼ 1 0
� ��Ĥ 3 0

�� �
¼ ð3=5Þða� bÞJ;

2 0
� ��Ĥ 0 0

�� �
¼ 0 0
� ��Ĥ 2 0

�� �
¼ ða� bÞJ:

(d) S1 ¼ S2 ¼ 2

4 74
� ��Ĥ 4 74

�� �
¼ �4J;

4 73
� ��Ĥ 4 73

�� �
¼ �2ðaþ bÞJ;

3 73
� ��Ĥ 3 73

�� �
¼ �2ða� bÞJ;

4 72
� ��Ĥ 4 72

�� �
¼ �ð4a=7þ 24b=7ÞJ;

3 72
� ��Ĥ 3 72

�� �
¼ 0;

2 72
� ��Ĥ 2 72

�� �
¼ �ð3a=7� 24b=7ÞJ;

4 72
� ��Ĥ 2 72

�� �
¼ 2 72
� ��Ĥ 4 72

�� �
¼ ð2

ffiffiffi
3

p
=7Þða� bÞJ;

4 71
� ��Ĥ 4 71

�� �
¼ ð2a=7� 30b=7ÞJ;

3 71
� ��Ĥ 3 71

�� �
¼ ð6=5Þða� bÞJ;
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2 71
� ��Ĥ 2 71

�� �
¼ ð12a=7þ 9b=7ÞJ;

1 71
� ��Ĥ 1 71

�� �
¼ ð4a=5þ 21b=5ÞJ;

4 71
� ��Ĥ 2 71

�� �
¼ 2 71
� ��Ĥ 4 71

�� �
¼ ð2

ffiffiffi
6

p
=7Þða� bÞJ;

3 71
� ��Ĥ 1 71

�� �
¼ 1 71
� ��Ĥ 3 71

�� �
¼ ð2

ffiffiffi
6

p
=5Þða� bÞJ;

4 0
� ��Ĥ 4 0

�� �
¼ ð4a=7� 32b=7ÞJ;

3 0
� ��Ĥ 3 0

�� �
¼ ð8=5Þða� bÞJ;

2 0
� ��Ĥ 2 0

�� �
¼ ð17a=7þ 4b=7ÞJ;

1 0
� ��Ĥ 1 0

�� �
¼ ð17a=5þ 8b=5ÞJ;

0 0
� ��Ĥ 0 0

�� �
¼ ð2aþ 4bÞJ;

4 0
� ��Ĥ 2 0

�� �
¼ 2 0
� ��Ĥ 4 0

�� �
¼ ½12=ð7

ffiffiffi
5

p
Þ	ða� bÞJ;

3 0
� ��Ĥ 1 0

�� �
¼ 1 0
� ��Ĥ 3 0

�� �
¼ ð6=5Þða� bÞJ;

2 0
� ��Ĥ 0 0

�� �
¼ 0 0
� ��Ĥ 2 0

�� �
¼

ffiffiffiffiffiffiffiffiffiffi
14=5

p
ða� bÞJ:

(e) S1 ¼ S2 ¼ 5=2

5 75
� ��Ĥ 5 75

�� �
¼ ð�25a=4ÞJ;

5 74
� ��Ĥ 5 74

�� �
¼ ð�15a=4� 5b=2ÞJ;

4 74
� ��Ĥ 4 74

�� �
¼ ð�15a=4þ 5b=2ÞJ;

5 73
� ��Ĥ 5 73

�� �
¼ ð�65a=36� 40b=9ÞJ;

4 73
� ��Ĥ 4 73

�� �
¼ �ð5a=4ÞJ;

3 73
� ��Ĥ 3 73

�� �
¼ ð�61a=36þ 40b=9ÞJ;

5 73
� ��Ĥ 3 73

�� �
¼ 3 73
� ��Ĥ 5 73

�� �
¼ 2

ffiffiffi
5

p
=9ða� bÞJ;

5 72
� ��Ĥ 5 72

�� �
¼ ð�5a=12� 35b=6ÞJ;

4 72
� ��Ĥ 4 72

�� �
¼ ð15a=28� 25b=14ÞJ;

3 72
� ��Ĥ 3 72

�� �
¼ ð11a=12þ 11b=6ÞJ;

2 72
� ��Ĥ 2 72

�� �
¼ ð�a=28þ 81b=14ÞJ;

5 72
� ��Ĥ 3 72

�� �
¼ 3 72
� ��Ĥ 5 72

�� �
¼

ffiffiffi
5

p
=3ða� bÞJ;
4 72
� ��Ĥ 2 72

�� �
¼ 2 72
� ��Ĥ 4 72

�� �
¼ 3

ffiffiffi
5

p
=7ða� bÞJ;

5 71
� ��Ĥ 5 71

�� �
¼ ð5a=12� 20b=3ÞJ;

4 71
� ��Ĥ 4 71

�� �
¼ ð45a=28� 20b=7ÞJ;

3 71
� ��Ĥ 3 71

�� �
¼ ð149a=60þ 4b=15ÞJ;

2 71
� ��Ĥ 2 71

�� �
¼ ð81a=28þ 20b=7ÞJ;

1 71
� ��Ĥ 1 71

�� �
¼ ð27a=20þ 32b=5ÞJ;

5 71
� ��Ĥ 3 71

�� �
¼ 3 71
� ��Ĥ 5 71

�� �
¼ 5

ffiffiffiffiffiffiffiffiffiffi
2=63

p
ða� bÞJ;

4 71
� ��Ĥ 2 71

�� �
¼ 2 71
� ��Ĥ 4 71

�� �
¼ 3

ffiffiffiffiffi
10

p
=7ða� bÞJ;

3 71
� ��Ĥ 1 71

�� �
¼ 1 71
� ��Ĥ 3 71

�� �
¼ 36=ð5

ffiffiffiffiffi
21

p
Þða� bÞJ;

5 0
� ��Ĥ 5 0

�� �
¼ ð25a=36� 125b=18ÞJ;

4 0
� ��Ĥ 4 0

�� �
¼ ð55a=28� 45b=14ÞJ;

3 0
� ��Ĥ 3 0

�� �
¼ ð541a=180� 23b=90ÞJ;

2 0
� ��Ĥ 2 0

�� �
¼ ð325a=84þ 79b=42ÞJ;

1 0
� ��Ĥ 1 0

�� �
¼ ð101a=20þ 27b=10ÞJ;

0 0
� ��Ĥ 0 0

�� �
¼ ð35a=12þ 35b=6ÞJ;

5 0
� ��Ĥ 3 0

�� �
¼ 3 0
� ��Ĥ 5 0

�� �
¼ ½ð10=9Þ

ffiffiffiffiffiffiffiffi
5=7

p
	ða� bÞJ;

4 0
� ��Ĥ 2 0

�� �
¼ 2 0
� ��Ĥ 4 0

�� �
¼ ½ð18=7Þ

ffiffiffiffiffiffiffiffi
1=3

p
	ða� bÞJ;

3 0
� ��Ĥ 1 0

�� �
¼ 1 0
� ��Ĥ 3 0

�� �
¼ ð36=5Þ

ffiffiffiffiffiffiffiffiffiffi
1=14

p
ða� bÞJ;

2 0
� ��Ĥ 0 0

�� �
¼ 0 0
� ��Ĥ 2 0

�� �
¼ 2

ffiffiffiffiffi
14

p
=3ða� bÞJ:
Appendix D

Eigenvalues (in unit of J) of the Hamiltonian
Ĥiso=aniso ¼ �J½aŜ1zŜ2z þ bðŜ1xŜ2x þ Ŝ1yŜ2yÞ	 (Table 27).



Table 27

Character E (a ¼ 1; b ¼ 0) (a ¼ b ¼ 1) (a ¼ 0; b ¼ 1)

(a) S1 ¼ S2 ¼ 1=2

|171S 2a=4 –1/4 –1/4 0

|1 0S a=4� b=2 1/4 –1/4 –1/2

|0 0S a=4þ b=2 1/4 3/4 1/2

(b) S1 ¼ S2 ¼ 1

|272S 2a –1 –1 0

|271S 2b 0 –1 –1

|171S b 0 1 1

|2 0S & |0 0S a=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 8abþ 64b2

q
=6

0 –1 –4/3

a=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 8abþ 64b2

q
=6

1 2 4/3

|1 0S a 1 1 0

(c) S1 ¼ S2 ¼ 3=2

|373S 29a=4 –9/4 –9/4 0

|372S 23a=4� 3b=2 –3/4 –9/4 –3/2

|272S 23a=4þ 3b=2 –3/4 3/4 3/2

|271S 3a=4 3/4 3/4 0

|371S & |171S
a=4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 24b2

q
=2

–1/4 –9/4 �
ffiffiffi
6

p

a=4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 24b2

q
=2

3/4 11/4
ffiffiffi
6

p

|3 0S & |1 0S
5a=4� b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 8abþ 13b2

q
=2

1/4 –9/4 �1�
ffiffiffiffiffi
13

p
=2

5a=4� bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 8abþ 13b2

q
=2

9/4 11/4 �1þ
ffiffiffiffiffi
13

p
=2

|2 0S & |0 0S
5a=4þ b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � 8abþ 13b2

q
=2

1/4 3/4 1�
ffiffiffiffiffi
13

p
=2

5a=4þ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � 8abþ 13b2

q
=2

9/4 15/4 1þ
ffiffiffiffiffi
13

p
=2

(d) S1 ¼ S2 ¼ 2

|474S 24a –4 –4 0

|473S 22a22b –2 –4 –2

|373S 22aþ 2b –2 0 2

|372S 0 0 0 0

|472S & |272S �a=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 48b2

q
=2

–1 –4 �2
ffiffiffi
3

p

�a=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 48b2

q
=2

0 3 2
ffiffiffi
3

p

|471S & |271S
a� 3b=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 12abþ 33b2

q
=2

0 –4 �3=2�
ffiffiffiffiffi
33

p
=2

a� 3b=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 12abþ 33b2

q
=2

2 3 �3=2þ
ffiffiffiffiffi
33

p
=2

|371S & |171S
aþ 3b=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � 12abþ 33b2

q
=2

0 0 3=2�
ffiffiffiffiffi
33

p
=2

aþ 3b=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � 12abþ 33b2

q
=2

2 5 3=2þ
ffiffiffiffiffi
33

p
=2

|4 0S, |2 0S & |0 0S 5a=3þ n cosðt þ 2p=3Þa 0 –4 �
ffiffiffiffiffiffiffiffiffiffi
22=3

p
5a=3þ n cosðt þ 4p=3Þa 1 3 �

ffiffiffiffiffiffiffiffiffiffi
22=3

p
5a=3þ n cosðtÞa 4 6 2

ffiffiffiffiffiffiffiffiffiffi
22=3

p
|3 0S & |1 0S

5a=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 16b2

q
=2

1 0 –2

5a=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 16b2

q
=2

4 5 2

[1] n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52a2=9þ 88b2=3

q
; t ¼ arccos½ð280a3=27� 424ab2=3Þ=n3	=3:

(e) S1 ¼ S2 ¼ 5=2

|575S 225a=4 –25/4 –25/4 0

|574S 215a=4� 5b=2 –15/4 –25/4 –5/2

|474S 215a=4þ 5b=2 –15/4 –5/4 5/2

|473S 25a=4 –5/4 –5/4 0

|573S & |373S �7a=4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 80b2

q
=2

–9/4 –25/4 �2
ffiffiffi
5

p

�7a=4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 80b2

q
=2

–5/4 11/4 2
ffiffiffi
5

p
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Table 27 (continued)

Character E (a ¼ 1; b ¼ 0) (a ¼ b ¼ 1) (a ¼ 0; b ¼ 1)

|572S & |372S
a=4� 2b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 16abþ 61b2

q
=2

–3/4 –25/4 �
ffiffiffiffiffi
61

p
=2

a=4� 2bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 16abþ 61b2

q
=2

5/4 11/4
ffiffiffiffiffi
61

p
=2

|472S & |272S
a=4þ 2b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � 16abþ 61b2

q
=2

–3/4 –5/4 �
ffiffiffiffiffi
61

p
=2

a=4þ 2bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � 16abþ 61b2

q
=2

5/4 23/4
ffiffiffiffiffi
61

p
=2

|571S, |371S & |171S 17a=12þ n cosðt þ 2p=3Þa –1/4 –25/4 �
ffiffiffiffiffi
46

p

17a=12þ n cosðt þ 4p=3Þa 3/4 11/4 0

17a=12þ n cosðtÞb 15/4 31/4
ffiffiffiffiffi
46

p

|471S & |271S
9a=4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 40b2

q
=2

3/4 –5/4 �
ffiffiffiffiffi
10

p

9a=4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 40b2

q
=2

15/4 23/4
ffiffiffiffiffi
10

p

|5 0S, |3 0S & |1 0S 35a=1223b=2þ n cosðt þ 2p=3Þb 1/4 –25/4 E–7.0812

35a=1223b=2þ n cosðt þ 4p=3Þb 9/4 11/4 E–1.0837

35a=1223b=2þ n cosðtÞb 25/4 31/4 E3.6449

|4 0S, |2 0S & |0 0S 35a=12þ 3b=2þ n cosðt þ 2p=3Þc 1/4 –5/4 E–3.6449

35a=12þ 3b=2þ n cosðt þ 4p=3Þc 9/4 23/4 E1.0837

35a=12þ 3b=2þ n cosðtÞc 25/4 35/4 E7.0812

an ¼ ½52a2=9þ 184b2=3	1=2; t ¼ arccos½ð280a3=27� 808ab2=3Þ=n3	=3:
bn ¼ ½112a2=9þ 16abþ 116b2=3	1=2; t ¼ arccos½ð640a3=27� 2897a2b=12þ 27ab2=4� 48b3Þ=n3	=3:
cn ¼ ½112a2=9� 16abþ 116b2=3	1=2; t ¼ arccos½ð640a3=27þ 16a2b� 656ab2=3þ 48b3Þ=n3	=3:
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